-
公开(公告)号:CN105424781A
公开(公告)日:2016-03-23
申请号:CN201510745596.2
申请日:2015-11-05
Applicant: 北京农业智能装备技术研究中心
IPC: G01N27/416
CPC classification number: G01N27/416
Abstract: 本发明公开一种基于微电极检测技术的土壤重金属含量检测方法,能够提高土壤中重金属含量检测的准确性,且能够在一次实验过程中对多种重金属的含量进行检测。方法包括:S1、将玻璃微电极和参比电极放入待测土壤样本的浸提液;S2、利用所述电化学工作站,采集所述玻璃微电极的电位,在所述电位变化平稳后,计算第一时长的电位的平均值,通过将所述平均值代入预先计算的所述待测重金属的离子浓度与电位的平均值的关系式,得到所述浸提液中所述待测重金属的离子浓度;S3、根据所述浸提液中所述待测重金属的离子浓度计算所述待测土壤样本中的所述待测重金属的含量。
-
公开(公告)号:CN104597094A
公开(公告)日:2015-05-06
申请号:CN201510033185.0
申请日:2015-01-22
Applicant: 北京农业智能装备技术研究中心
IPC: G01N27/403 , G01N27/333
Abstract: 本发明涉及动态离子流检测技术领域,具体涉及一种植物活体动态离子流检测装置。本发明装置包括:溶液池、压盖、参比电极、离子选择性玻璃微电极以及夹紧部件;通过所述溶液池与所述压盖扣紧的方式对待检测植物活体进行固定,并且用夹紧部件使所述溶液池和压盖夹紧在一起;所述参比电极和离子选择性玻璃微电极分别通过所述压盖上的通孔插入所述溶液池中的检测液中,采集动态离子流信息。一方面能够起到更好的固定作用,同时也能有效的防止重物固定待检测植物活体过程中对待检测植物活体的创伤,进而提高了检测结果的准确性。
-
公开(公告)号:CN102511220B
公开(公告)日:2013-09-04
申请号:CN201110364011.4
申请日:2011-11-16
Applicant: 北京农业智能装备技术研究中心
IPC: A01C1/02
Abstract: 本发明提供了一种基于微观动态离子流检测技术的测定小麦种子活力的方法,其是利用微观动态离子流检测技术对连续发芽期的小麦种子做动态K+流检测,根据小麦种子的净K+流速及方向来测定种子活力。本发明能够实现对小麦种子活力的无损、活体、快速检测,检测一个样本耗时少至几分钟多至十几分钟,检测准确性高,耗时短,活力强的小麦种子K+外流作用弱;而活力弱的小麦种子K+外流作用强,呈现流失状态,评价方法简单可靠,为小麦育种、小麦种子储藏、作物田间生产提供了一种无损的、快速的、检测后的生物材料还能继续生长的小麦种子活力检测新方法。
-
公开(公告)号:CN102687612A
公开(公告)日:2012-09-26
申请号:CN201210130325.2
申请日:2012-04-27
Applicant: 北京农业智能装备技术研究中心
Abstract: 本发明公开了一种纹枯病抗性评估方法,包括以下步骤:A:选取具有不同纹枯病抗性的小麦萌发期的种子,并采用染有纹枯病菌的种子对选取的部分种子进行侵染,将其余种子作为对照种子;B:在不破坏种子细胞和组织的情况下,采用非损伤性扫描离子选择电极技术检测对照种子和受侵染的待测种子的胚根处的Ca2+离子电压差;C:根据所测Ca2+离子电压差计算所述待测种子的胚根处的Ca2+的流向及流速;D:若所述待测种子的胚根处的Ca2+的流向始终保持外流,则该待测种子为感病品种,若所述待测种子胚根处的Ca2+的流向始终保持内流,则该待测种子为抗病品种。本发明能缩短小麦纹枯病抗性鉴定时间,且其准确性不受环境等不确定因素的影响,同时可节省大量的人力物力。
-
公开(公告)号:CN102520046A
公开(公告)日:2012-06-27
申请号:CN201110364009.7
申请日:2011-11-16
Applicant: 北京农业智能装备技术研究中心
IPC: G01N27/416 , A01G7/06
Abstract: 本发明提供了一种基于微观动态离子流检测技术的水稻真菌性立枯病的检测方法,其是利用微观动态离子流检测技术分别检测水稻根系K+、NH4+和Ca2+的吸收能力,检测出感染真菌性立枯病的水稻。本发明利用微观动态离子流检测技术可测得真菌性立枯病发病时的离子流信息,通过与正常生长的水稻比较,获得真菌性立枯病发病时的离子流吸收或释放规律,利用此规律评价真菌性立枯病的发生,从而实现对水稻真菌性立枯病的快速、无损检测,检测后的植株材料还能够正常生长,避免了珍贵水稻苗的损失,检测结果对比明显,方法可靠,为水稻育苗和水稻育种提供了一种快速、无损的检测水稻真菌性立枯病的新方法。
-
公开(公告)号:CN102393416A
公开(公告)日:2012-03-28
申请号:CN201110246849.3
申请日:2011-08-25
Applicant: 北京农业智能装备技术研究中心
IPC: G01N27/416
Abstract: 本发明涉及一种水稻生理性青枯病的快速评价方法,所述方法采用非损伤微测技术检测水稻苗根部无机离子的离子流,所述离子流流向处于外流状态的水稻苗即为发生了生理性青枯病,所述无机离子为K+、NH4+、Ca2+中的一种或两种以上。本发明还提供了非损伤微测技术在检测水稻生理性青枯病中的用途。本发明所述的评价检测方法能够实现对水稻生理性青枯病的无损、活体、快速检测,发病水稻苗与正常水稻苗净离子流对比明显,检测一个样本只需要几分钟最多十几分钟,耗时短;相对于感官识别的评价方法,检测准确性高。本发明所述的检测方法简单、可靠,具有广泛的应用前景。
-
公开(公告)号:CN106970125B
公开(公告)日:2024-02-23
申请号:CN201710233381.1
申请日:2017-04-11
Applicant: 北京农业智能装备技术研究中心
Abstract: 本发明提供一种便携式土壤重金属检测装置,其包括:用于将土壤重金属待测液中的待测重金属浓度转化为原始电信号的玻璃微电极阵列,所述玻璃微电极阵列包括一个参比电极和至少一个工作电极,所述工作电极内灌充15μm‑502+μm长度的液态的Cd 离子选择交换剂或15μm‑50μm长度的液态的Pb2+离子选择交换剂;与所述玻璃微电极阵列相连的前置放大装置,所述前置放大装置用于放大所述原始电信号以得到增强电信号;与所述前置放大装置相连的信号调理电路,所述信号调理电路用于将所述增强电信号进行降噪处理以得到有效电信号;与所述信号调理电路相连的数据处理装置,所述数据处理装置用于转换并处理所述有效电信号。本发明能够有效的提高数据获取及分析的准确性。
-
公开(公告)号:CN112903789B
公开(公告)日:2023-04-07
申请号:CN202110063873.7
申请日:2021-01-18
Applicant: 北京农业智能装备技术研究中心
IPC: G01N27/36 , G01N27/403
Abstract: 本发明提供的基于离子吸收动力学的离子流速检测方法及系统,包括:将目标植物的根系固定于盛装有耗竭液的培养皿中;将玻璃微电极的电极尖端设置于目标检测位置附近;获取预设时间段内微电极测量的实时电压数据;测量目标植物的根系参数;根据实时电压数据和根系参数,确定目标植物的净吸收速率。本发明提供的基于离子吸收动力学的离子流速检测方法及系统,是一种以离子选择性电极法为手段,以基于植物离子吸收动力学为基础的植物根系对外界离子吸收/外排流速的检测方法,在不需要大量耗费人力的前提下,能够无损的检测到植株单株,或者小群体植株特定离子的吸收速度,辅助科研人员对作物生长状态及养分吸收特征进行评价,提高检测效率。
-
公开(公告)号:CN108303453B
公开(公告)日:2020-04-10
申请号:CN201711476299.8
申请日:2017-12-29
Applicant: 北京农业智能装备技术研究中心
IPC: G01N27/327 , G01N27/48
Abstract: 本发明涉及一种同时活体检测水杨酸和吲哚乙酸的传感器及其构建方法。本发明针对现有检测技术的缺点,通过使用不锈钢丝作为工作电极,通过化学修饰提高检测灵敏度,实现植物水杨酸和吲哚乙酸的同时活体监测,真实地获取植物水杨酸和吲哚乙酸活体的、即时的信息,为植物生命活动规律、揭示植物生命现象本质提供更多的理论依据。
-
公开(公告)号:CN108181365B
公开(公告)日:2020-01-07
申请号:CN201711403104.7
申请日:2017-12-22
Applicant: 北京农业智能装备技术研究中心
Abstract: 本发明涉及微电极生物技术领域,具体涉及一种活体检测水杨酸的微型比率型传感器及其构建方法与应用。通常的电化学传感器是只有一种物质的单信号输出,本发明提供一种双信号输出的SA微型比率型传感器,从而更好的应用于植物的活体研究。本发明电极采用硫堇/GO/MWNT的纳米簇进行修饰,将硫堇作为内置的校正信号,连同SA的信号一起构成双信号输出,从而构建比率型传感器,显著提高SA传感器的稳定性和重现性,从而实现植物活体SA检测时的准确性及可靠性。
-
-
-
-
-
-
-
-
-