基于聚类描述的小样本实体识别方法、装置和计算机设备

    公开(公告)号:CN116757216A

    公开(公告)日:2023-09-15

    申请号:CN202311024641.6

    申请日:2023-08-15

    Abstract: 本申请涉及一种基于聚类描述的小样本实体识别方法、装置和计算机设备,通过获取待识别文本数据;将所述待识别文本数据输入实体边界定位模型,得到所述待识别文本数据中所有实体的实体边界;将所述待识别文本数据以及所述实体边界输入实体聚类模型,得到多个类别的实体;基于多个类别的所述实体,确定每个类别的类别标识以及对应实体。上述基于聚类描述的小样本实体识别方法,基于实体边界定位模型和实体聚类模型,能够精准识别实体边界,并对实体进行精准分类,明显提高了实体识别和分类效率,并且由于人工介入的减少,也会一定程度提高实体标记的准确性。

    一种量化感知训练的点云目标检测方法及装置

    公开(公告)号:CN116721399A

    公开(公告)日:2023-09-08

    申请号:CN202310925867.7

    申请日:2023-07-26

    Abstract: 本说明书公开了一种量化感知训练的点云目标检测方法及装置,可以获取训练样本,将训练样本中的点云样本数据输入到全精度网络中,得到目标检测结果,以对全精度网络进行训练,得到训练后的全精度网络,而后,将训练后的全精度网络进行模型量化,得到量化后网络,量化后网络的参数精度低于全精度网络的参数精度,而后,将训练样本输入到量化后网络中,得到量化后网络得到的目标检测结果,根据标注信息和目标检测结果,对量化后网络进行参数微调训练,得到训练后的量化后网络,最后,将训练后的量化后网络部署在无人驾驶设备中,以使无人驾驶设备通过量化后网络进行点云目标检测,从而在保证准确性的情况下提高了无人驾驶设备的点云检测效率。

    一种基于多模态学习的视频去重方法及装置

    公开(公告)号:CN116186330A

    公开(公告)日:2023-05-30

    申请号:CN202310442154.5

    申请日:2023-04-23

    Abstract: 本说明书公开了一种基于多模态学习的视频去重方法及装置,可以获取视频存储请求,而后,可以根据视频存储请求,确定待检测视频,以及确定数据库中的目标视频,进而,将待检测视频、待检测视频的文本相关信息输入到预先训练的识别模型中的第一特征提取网络,提取待检测视频的视觉‑文本多模态特征,将目标视频和目标视频的文本相关信息输入识别模型的第二特征提取网络,提取目标视频的视觉‑文本多模态特征。将待检测视频的视觉‑文本多模态特征以及目标视频的视觉‑文本多模态特征输入到识别模型中的重复检测子网络,得到重复检测结果,并根据该重复检测结果,确定是否将待检测视频存储在数据库中,从而能够提高视频去重的准确性。

    一种服务器集群资源的统一调度方法和装置

    公开(公告)号:CN115952008A

    公开(公告)日:2023-04-11

    申请号:CN202310247734.9

    申请日:2023-03-15

    Abstract: 本发明公开了一种服务器集群资源的统一调度方法和装置,该方法针对服务器资源调度的增量实时调度和全量碎片整理,合并简化了调度方法,实现了方法的复用;该方法包括以下步骤:获取当前时刻服务器集群状态的快照;根据快照,获取集群中的所有在运行的服务器集合,并根据优先级进行降序排列;依次遍历所排序的服务器集合,对每台服务器,通过弹射链和蒙特卡洛树搜索方法,依次判断所部署的容器是否可迁移至其它低优先级的服务器,并执行相应操作。本发明能获得完整的迁移路径和过程态,对服务器集群的资源进行整理,提高了资源的使用率,优化集群性能,降低功耗,助力实现数据中心的低碳节能、绿色环保的追求。

Patent Agency Ranking