基于上下文的局部空间信息建模方法

    公开(公告)号:CN102945373A

    公开(公告)日:2013-02-27

    申请号:CN201210408367.8

    申请日:2012-10-24

    Abstract: 一种基于上下文的局部空间信息建模方法,包括步骤:在提取每个图像的局部特征后,提取相应的上下文特征;根据每个局部特征对应的视觉单词,从测试图像中随机提取局部特征分组;利用聚类算法,在各组局部特征对应的上下文特征集合上训练得到多组上下文模式;根据局部特征对应的不同上下文模式进行聚集操作,将聚集结果串联得到图像的最终表达。本发明对于未经过对齐处理的图像,依然能够有效地处理其空间信息。在实际应用中,将该方法与现有的考虑绝对空间关系的方法相结合,还能够进一步提升图像分类精度。

    基于深度自编码器的人眼检测和定位方法

    公开(公告)号:CN105205453B

    公开(公告)日:2019-01-08

    申请号:CN201510537480.X

    申请日:2015-08-28

    Inventor: 王亮 黄永祯 唐微

    Abstract: 本发明公开了一种用于人眼检测和定位的方法,包括:对带有标定好的人眼矩形框位置的训练集中的所有图像,利用人眼矩形框位置生成二值化的标签图;在图像上随机取小图像块,无监督地分层训练多个自编码器以构建深度自编码器,并利用自编码器中各层的权重对深度自编码器进行初始化;在原图像和标签图的相同位置上随机取小原图像块和小标签图像块,以小标签图像块作为监督信息,以小原图像块为输入,优化深度自编码器;在待测图像上以滑动窗口的方式生成多个小待测图像块,利用深度自编码器得到每个小待测图像块的小待测标签图像块并将其合并在一起,得到待测图像的待测标签图,对待测标签图进行二值化,利用坐标投影或寻找轮廓得到人眼的位置。

    一种利用紧凑视频主题描述子进行视频检索的方法

    公开(公告)号:CN103279581A

    公开(公告)日:2013-09-04

    申请号:CN201310255896.3

    申请日:2013-06-25

    Abstract: 本发明公开了一种利用基于无向主题模型的紧凑视频主题描述子进行视频检索的方法,该方法包括以下步骤:提取视频局部特征并用聚类算法得到视频的词袋(BoW)特征;利用视频词袋特征训练有稀疏约束的非负无向主题模型来学习视频的主题特征;用训练好的主题模型推断视频的主题描述子,通过计算描述子之间的余弦距离来检索视频。本发明方法能够从高维的视频词袋特征中提取出低维并且稀疏的视频主题描述,从而大大提高了在大规模数据库以及带宽受限的移动搜索系统中的检索效率;同时该方法所训练的主题模型能够很好的挖掘视频的主题特征结构,因此提取出的主题描述子即使在维数很低的情况下仍然具有比原始的高维词袋特征更高的检索精确度。

    一种基于在线学习的局部可形变目标检测方法及其系统

    公开(公告)号:CN103258216A

    公开(公告)日:2013-08-21

    申请号:CN201310180015.6

    申请日:2013-05-15

    Inventor: 王亮 黄永祯 唐微

    Abstract: 本发明公开了一种基于在线学习的局部可形变目标检测方法及其系统。该方法包括:步骤1、利用训练集中的样本图像对局部可形变目标检测模型进行训练,得到初步训练后的局部可形变目标检测模型;步骤2、利用所述局部可形变目标检测模型对待测图像进行目标检测,并利用GUI标注在线学习方法对已有的局部可形变目标检测模型进行更新优化。本发明的上述方法将整个耗时的训练过程分布在每次目标检测之中,同时模型可以实时更新,局部可形变检测模型鲁棒性会进一步得到提升,且对内存需求量不大。根据本发明的上述方法,在大数据背景下,可以快速有效地处理用于目标检测的数据。

Patent Agency Ranking