-
公开(公告)号:CN108517462B
公开(公告)日:2020-07-10
申请号:CN201810320311.4
申请日:2018-04-11
Applicant: 东北大学
Abstract: 一种高延展性的EH40级船板钢及其制备方法,属于冶金技术领域;船板钢的化学成分按重量百分数分别为:C:0.04~0.08%,Si:0.04~0.16%,Mn:0.90~1.20%,Nb:0.03~0.04%,Ti:0.01~0.02%,Als:0.02~0.04%,P:≤0.02%,S:≤0.01%,其余为铁和不可避免的杂质;EH40级船板钢的制备方法:采用厚度为120~140mm的钢坯进行加热、保温、粗轧、精轧、冷却获得成品船板钢;本发明通过采用控轧控冷技术获得组织为软相铁素体和硬相贝氏体;另外不添加Cr、V、Ni等元素,成本低廉;利用快速冷却的方法,可以适当提高终轧温度,降低轧机负荷,提高轧制效率,实现了一种高延展性的EH40级船板钢低成本、易轧制、高效率的生产。
-
公开(公告)号:CN108517463B
公开(公告)日:2020-01-31
申请号:CN201810320314.8
申请日:2018-04-11
Applicant: 东北大学
Abstract: 一种高延展性的FH500级船板钢及其制备方法,属于冶金技术领域;船板钢的组分按重量百分数分别为:C:0.04~0.08%,Si:0.04~0.16%,Mn:1.20~1.40%,Nb:0.03~0.04%,Ti:0.01~0.02%,Als:0.02~0.04%,P≤0.02%,S≤0.01%,其余为Fe和不可避免的杂质;FH500级船板钢的制备方法:采用厚度为120~140mm的钢坯进行加热、保温、粗轧、精轧、冷却获得成品船板钢;本发明通过采用控轧控冷技术获得组织为软相铁素体和硬相贝氏体;另外不添加Cr、Ni、Mo等元素,成本低廉;利用快速冷却的方法,可以适当提高终轧温度,降低轧机负荷,提高轧制效率,实现了一种高延展性的FH500级船板钢低成本、易轧制、高效率的生产。
-
公开(公告)号:CN108588568B
公开(公告)日:2019-10-01
申请号:CN201810841460.5
申请日:2018-07-27
Applicant: 东北大学 , 湖南华菱涟源钢铁有限公司 , 湖南华菱涟钢薄板有限公司
Abstract: 一种抗拉强度780MPa级极薄规格热轧双相钢及制造方法,属于冶金技术领域;该双相钢化学成分配比为,C:0.04~0.058%,Si:0.05~0.1%,Mn:1.3~1.5%,Nb:0.025~0.035%,Ti:0.028~0.039%,Cr:0.5~0.6%,S:≤0.003%,P:≤0.012%,Als:0.02~0.05%,余量为Fe和杂质;制造方法:现将连铸坯进行加热,然后采用半无头工艺进行轧制,最后进行两阶段控制冷却、卷取;本发明成分设计利用Ti和微量的Si元素,降低合金成本,改善表面质量,工艺上采用了半无头轧制工艺,有利于保证热轧双相钢的力学性能的稳定性,为极薄规格热轧双相钢实现“以热代冷”奠定了基础。
-
公开(公告)号:CN104805359B
公开(公告)日:2017-04-05
申请号:CN201510241118.8
申请日:2015-05-13
Applicant: 东北大学 , 鞍钢集团朝阳钢铁有限公司
Abstract: 本发明提供一种抗拉强度610MPa级汽车大梁钢及其制备方法。其化学成分按质量百分数为:C:0.04~0.12%,Si:0.05~0.35%,Mn:0.8~1.4%,S:≤0.015%,P:≤0.02%,Als:0.02~0.05%,Ti:0.04~0.08%,余量为Fe和不可避免的杂质;组织为准多边形铁素体和贝氏体,其中准多边形铁素体体积分数为85~95%,贝氏体体积分数为5~15%,平均晶粒尺寸为3~6微米。本发明还提供了所述大梁钢的制备方法,采用上述化学成分配比的钢坯进行合理的工艺设计,以廉价的微合金钛替代贵重微合金铌和钒,在节约生产成本的同时降低了轧机和卷取机的负荷,提高了生产效率,并且得到抗拉强度为630~690MPa的汽车大梁钢。
-
公开(公告)号:CN105740467A
公开(公告)日:2016-07-06
申请号:CN201610127406.5
申请日:2016-03-07
Applicant: 东北大学
IPC: G06F17/30
CPC classification number: G06F17/30536 , G06F17/30294 , G06F17/30598
Abstract: 本发明提出一种C?Mn钢工业大数据的挖掘方法,属于钢铁工业生产和数据统计建模的交叉技术领域,该方法包括数据样本选取、钢卷归并、相似工艺聚类和训练数据均匀化;本发明通过选择多个钢牌号的数据,使数据样本中包含了较为全面的参数信息,反映出更客观的物理冶金规律,使模型具有更广泛的适用性;通过对检测钢坯成分的判断和采用聚类的方法,将相似工艺的多组数据校正为一组数据,精简数据量,删除冗余数据;在此过程中剔除了异常数据,减小了误差,使数据的规律性更为显著;通过统计训练数据三种力学性能的分布,调整了训练数据的分布均衡性;采用均衡的数据训练神经网络,可以使网络模型学习到均衡的信息,提高了模型的规律性和准确性。
-
公开(公告)号:CN104805359A
公开(公告)日:2015-07-29
申请号:CN201510241118.8
申请日:2015-05-13
Applicant: 东北大学 , 鞍钢集团朝阳钢铁有限公司
CPC classification number: C22C38/02 , C21D8/0226 , C22C38/04 , C22C38/06 , C22C38/14
Abstract: 本发明提供一种抗拉强度610MPa级汽车大梁钢及其制备方法。其化学成分按质量百分数为:C:0.04~0.12%,Si:0.05~0.35%,Mn:0.8~1.4%,S:≤0.015%,P:≤0.02%,Als:0.02~0.05%,Ti:0.04~0.08%,余量为Fe和不可避免的杂质;组织为准多边形铁素体和贝氏体,其中准多边形铁素体体积分数为85~95%,贝氏体体积分数为5~15%,平均晶粒尺寸为3~6微米。本发明还提供了所述大梁钢的制备方法,采用上述化学成分配比的钢坯进行合理的工艺设计,以廉价的微合金钛替代贵重微合金铌和钒,在节约生产成本的同时降低了轧机和卷取机的负荷,提高了生产效率,并且得到抗拉强度为630~690MPa的汽车大梁钢。
-
公开(公告)号:CN102653836A
公开(公告)日:2012-09-05
申请号:CN201210138675.3
申请日:2012-05-04
Applicant: 湖南华菱涟源钢铁有限公司 , 湖南华菱涟钢薄板有限公司 , 东北大学
Abstract: 本发明公开了一种X70管线钢热扎钢卷的生产方法,成分设计不采用V、Mo、Cu等合金,提高Nb合金含量,加入适当Cr。常温铸坯入加热炉加热,加热温度1180-1220℃,保温时间150-240min,加热后的铸坯入粗轧机组轧制,粗轧机组的第一道次R1至第四道次R4的压下率大于20%,第五道次R5压下率大于23%,粗终轧温度为1000~1050℃,中间坯厚度52~60mm。粗轧后的钢坯直接入精连轧机组,入精轧温度980~1040℃,精连轧机组的第六机架F6和第七机架F7的压下率大于8%,精轧后的钢板进行超快冷段冷却和层流冷却,冷却速度15~20℃/S,分别控制快冷段钢板降温及前段集冷冷却钢板降温80~100℃,钢板到达层流冷却中段时温度低于620℃,卷取温度400-500℃。
-
公开(公告)号:CN102605251A
公开(公告)日:2012-07-25
申请号:CN201210085758.0
申请日:2012-03-28
Applicant: 东北大学
Abstract: 本发明属于轧钢技术领域,具体涉及一种前置式超快冷制备热轧双相钢的方法。实现本发明的技术方案是:将连铸坯,经隧道炉加热,控制加热温度1150~1200℃,加热时间为120min,出炉温度1100~1150℃;出炉后的连铸坯在热连轧机组上进行轧制,控制入粗轧机温度1000~1100℃,精轧温度950~990℃,终轧温度800~830℃;热轧后进行冷却控制,首先经超快速冷却,温降为110~130℃,冷却速度为100~140℃/s,随后空冷2~6s,再经层流冷却至100~240℃进行卷取,得到厚度为2.75~4.7mm的钢板。本发明的技术方案是改变了传统的生产双相钢的后置式超快冷工艺,应用工业生产中已有的前置式超快冷设备,避免了对控冷设备的改造,性能完全满足用户要求。
-
公开(公告)号:CN101768703B
公开(公告)日:2011-09-21
申请号:CN201010101105.8
申请日:2010-01-26
Applicant: 东北大学
IPC: C22C38/58
Abstract: 一种低屈强比X80级管线钢及其制造方法,属于冶金技术领域,该管线钢的成分按重量百分比为C 0.02~0.06%,Si 0.22~0.29%,Mn 1.6~1.9%,S≤0.002%,P≤0.012%,A1≤0.045%,Cu 0.15~0.25%,Cr 0.08~0.26%,Ni 0.2~0.3%,Nb 0.07~0.11%,V 0.03~0.057%,Ti 0.012~0.022%,Mo 0.22~0.32%,N≤0.0043%,Ca≤0.0018%,余量为Fe。制造方法为:冶炼、浇注成铸坯,加热保温后进行两段轧制,第一段轧制开轧温度为1100~1150℃;第二段轧制开轧温度为920~940℃,第二阶段的总压下量68.4~72%;轧制完成后快速冷却,再空冷后以5~30℃/s的冷却速度冷却至340~490℃。本发明的产品具备较高强度的同时具有较低的屈强比即优良的抗大变形能力,可用于地震多发带和永冻带油气的正常运输和供应,具有广阔的发展前景。
-
公开(公告)号:CN118314998A
公开(公告)日:2024-07-09
申请号:CN202410529220.7
申请日:2024-04-29
Applicant: 东北大学 , 中信金属股份有限公司 , 湖南华菱湘潭钢铁有限公司
Abstract: 本发明提供了一种融合物理冶金与数据驱动的热轧带钢力学性能预测方法,属于热轧材料力学性能预测研究领域,包括:获取热轧带钢的生产数据集,通过遗传算法优化的物理冶金模型计算热轧带钢的各组织成分占比;构建力学性能预测所需数据集并进行预处理,得到预处理后的数据集;将预处理后的数据集划分为训练集和测试集;构建随机森林模型,利用随机森林模型对训练集进行计算,获取最优参数,并对测试集进行力学性能预测。本发明采用上述的一种融合物理冶金与数据驱动的热轧带钢力学性能预测方法,将成分工艺参数与各相分数占比同时作为输入数据实现对钢材力学性能的预测,可有效提高力学性能预测精度,有助于实现工艺参数的优化,提高产品质量。
-
-
-
-
-
-
-
-
-