-
公开(公告)号:CN107092871A
公开(公告)日:2017-08-25
申请号:CN201710220588.5
申请日:2017-04-06
IPC: G06K9/00
CPC classification number: G06K9/00637 , G06K9/00671
Abstract: 本发明公开了一种基于多尺度多特征融合的遥感影像建筑物检测方法,包括对高分辨率遥感影像降采样,获得由不同尺度的影像构成的影像金字塔;计算影像金字塔的边缘影像;对不同尺度的边缘影像进行多组特征计算并进行融合建立特征模型;根据特征模型与邻域局部非极大值抑制进行窗口选取获得目标窗口;对目标窗口进行小范围内的膨胀/收缩计算获得矩形窗口;根据目标窗口的主方向旋转所述矩形窗口得到最优目标窗口,并根据最优目标窗口提取出建筑物。其显著效果是:在高斯金字塔影像上进行多尺度的建筑物检测,对大小、形状、朝向各异的建筑物的检测具有普适性;且有效地提高了建筑物自动检测的精度和效率。
-
公开(公告)号:CN112883839A
公开(公告)日:2021-06-01
申请号:CN202110140498.1
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种基于自适应样本集构造与深度学习的遥感影像解译方法,包括步骤:对样本总集进行特征提取,并对提取的特征进行聚类,构建视觉词袋模型的特征词典,得到样本子集;构建基于深度学习网络的解译模型,并先后输入样本总集和聚类的样本子集对解译模型进行训练,分别得到总解译模型和与各样本子集相对应的子解译模型;采用总解译模型以及根据待解译遥感影像的影像特征选取的合适的若干子解译模型,对待解译遥感影像进行自适应解译。其显著效果是:通过聚类的自动化、分布式手段快速建立海量遥感影像的样本库,并利用机器深度学习技术对样本库数据进行训练,获得适应于不同场景的智能解译模型,解译精度高,鲁棒性好。
-