基于深度卷积网络控制门模型的用药推荐方法及系统

    公开(公告)号:CN116913459A

    公开(公告)日:2023-10-20

    申请号:CN202311171207.0

    申请日:2023-09-12

    Abstract: 本发明提供了基于深度卷积网络控制门模型的用药推荐方法及系统,该方法包括以下步骤:S1:获取现有的患者诊疗检查信息以及对应的最终用药数据;S2:根据患者诊疗检查信息与最终用药数据的对应关系,将每一条患者诊疗检查信息与最终用药数据进行数字ID映射的转化;S3:将转化为数字ID的患者诊疗信息作为输入,最终用药数据作为标签,输入控制门模型进行训练;S4:将实际患者诊疗信息输入控制门模型,输出建议用药概率。本发明通过深度卷积网络控制门模型学习已有的用户诊断检查数据,在训练完毕后,可以使用训练完毕的模型基于新的患者诊断检查检测指标对患者用药进行推荐,最终推荐出患者的最佳用药。

    一种异步队列任务的报错处理方法及系统

    公开(公告)号:CN116501533B

    公开(公告)日:2023-08-25

    申请号:CN202310759103.5

    申请日:2023-06-26

    Abstract: 本发明提供了一种异步队列任务的报错处理方法及系统,该方法包括以下步骤:S1:将诊断文本进行分组预处理,并存入消息队列中;S2:从消息队列中逐组取出消息,并通过API接口压入第一数据库中;S3:异步任务开启,从第一数据库获取队列消息,解析后送入到抽取模型中执行关系抽取任务,若执行失败,则向第二数据库写入识别键值;S4:继续获取队列消息,并判断识别键值是否与当前消息的键对应,若对应,则当前消息跳过关系抽取任务;S5:重复S3‑S4步骤,直到消息处理完毕。本发明所提供的一种异步队列任务的报错处理方法及系统,通过获取异常任务的任务ID+时间戳作为唯一标识,从而判断后续任务是否可以直接跳过不处理,进而达到减少消息处理时间的目的。

    一种基于提示学习模型的传染病预警直报方法和系统

    公开(公告)号:CN115631868B

    公开(公告)日:2023-04-21

    申请号:CN202211461585.8

    申请日:2022-11-17

    Abstract: 本发明提供了一种基于提示学习模型的传染病预警直报方法和系统,涉及医疗信息化技术领域,包括如下步骤:获取不同医院的原始诊断疾病数据,提取所述原始诊断疾病数据中的诊断描述;基于所述诊断描述构建诊断描述的集合;获取不同传染病的规范名称,基于所述规范名称构建传染病名称集合;基于语言模型对诊断描述的集合中的每个诊断描述与传染病名称集合中的每个规范名称进行比对,判断是否匹配,当任一诊断描述与任一规范名称判断为匹配时上报预警。避免了碍于各个地区的医生的诊断业务能力不同,对传染病进行个性化的诊断描述或自定义的诊断描述,导致传染病不能够被及时发现,提高了识别传染病的准确度。

    一种增强医疗语句语义向量表示的模型构造方法及系统

    公开(公告)号:CN115545041B

    公开(公告)日:2023-04-07

    申请号:CN202211488054.8

    申请日:2022-11-25

    Abstract: 本发明涉及自然语言处理技术领域,且公开了一种增强医疗语句语义向量表示的模型构造方法,包括收集医学领域的医疗数据,并对所述医疗数据进行预处理,建构一份扩充医学词典;基于所述医疗数据进行预处理结果,保留Bert中的MLM任务,构建损失函数做全词掩码训练;保存训练后的Bert模型,切分所述医疗数据中的每段文本形成句子集合;基于句子集合,对每个句子进行对比学习训练;构建一个新的损失函数,判断当新的损失函数连续3次得出的数据不下降的情况下,得出最终Bert模型作为最终的增强语义向量表示的模型。本专利结合继续预训练和对比学习来有效增强医疗语句语义表示的构造方法,使医疗语句的表达更精确。

    一种基于关系抽取模型的样本优化方法及系统

    公开(公告)号:CN114996472A

    公开(公告)日:2022-09-02

    申请号:CN202210581933.9

    申请日:2022-05-26

    Abstract: 从本申请提出一种基于关系抽取模型的样本优化方法及系统,属于数据处理技术领域,方法包括:获取训练样本集,所述训练样本集包括M条样本,每条样本由多个已标记的实体以及实体之间的关系组成;构建已知实体的关系列表;根据已知实体的关系列表,在训练样本集中,若实体以及实体之间的关系不存在于已知实体的关系列表中,则删除训练样本集中该实体以及实体之间的关系,得到新的训练样本集;在新的训练样本集中取出任一样本,将任一样本改造成正样本与负样本的集合,所有样本均经过阈值处理,得到最终的输入样本。本申请在训练结果的精度不产生影响的前提下,降低了“关系抽取”的硬件资源消耗,提高计算效率。

    一种基于跨域迁移学习的命名实体识别方法和装置

    公开(公告)号:CN117610574B

    公开(公告)日:2024-04-26

    申请号:CN202410090398.6

    申请日:2024-01-23

    Abstract: 本申请提供了一种基于跨域迁移学习的命名实体识别方法和装置,所述方法包括:在单独锁定源域命名实体识别模型的每一模型结构层时,基于源域命名实体识别模型的指标分数的变化情况确定出待锁定结构层;基于t‑SNE算法进行关键样本选取,得到训练文本数据;将待锁定结构层锁定,使用训练文本数据对源域命名实体识别模型进行训练,得到目标域命名实体识别模型;将目标域的医学文本数据输入到目标域命名实体识别模型,得到目标域命名实体识别模型对医学文本数据实体识别的结果。通过所述方法和装置,以解决迁移学习时对目标域样本数量的大量需求,实现有效的精准标注,用最少的样本来最大化的提升模型效果,以提升模型对命名实体识别的准确性。

    基于计算特征网络的精准医学信息结论生成方法

    公开(公告)号:CN117763140A

    公开(公告)日:2024-03-26

    申请号:CN202410196621.5

    申请日:2024-02-22

    Abstract: 本发明涉及一种基于计算特征网络的精准医学信息结论生成方法,该方法包括:步骤S10、获取医学论文的文本信息;步骤S20、构建基于要部分和结论部分的训练集和验证集;步骤S30、将训练集输入计算网络中进行结论输出模型训练;步骤S40、在利用完成训练的结论输出模型进行结论输出得到输出结果后,基于用户对所述输出结果的修正,优化所述结论输出模型。本发明,能够更好的基于医学论文的摘要部分得到对应的结论,减少人工阅读的繁琐工序,帮助用户得到逻辑更严密、表达清晰、更直观的结论,有利于提高效率。

Patent Agency Ranking