基于控制流分析的软件动态行为建模方法和装置

    公开(公告)号:CN108628600B

    公开(公告)日:2020-12-15

    申请号:CN201810434107.5

    申请日:2018-05-08

    Abstract: 本发明公开了一种基于控制流分析的软件动态行为建模方法和装置,该方法对软件动态执行过程的函数执行轨迹进行追踪,建立以函数执行来描述的软件动态行为序列数据库;分析软件动态行为序列,提取函数调用逻辑关系和函数调用统计数据,形成函数调用控制流信息;根据函数调用控制流信息,将软件系统抽象成为一种多标签动态软件行为网络模型。从控制流分析和统计的角度出发,结合复杂网络的理论方法,更加全面和细致的分析了软件函数动态调用关系,能够更加全面科学的对软件行为进行表达和度量。

    基于深度神经网络的软件漏洞自动分类方法

    公开(公告)号:CN109886020B

    公开(公告)日:2020-02-04

    申请号:CN201910068001.2

    申请日:2019-01-24

    Applicant: 燕山大学

    Abstract: 本申请提供一种基于深度神经网络的软件漏洞自动分类方法,包括:S1,对漏洞信息进行预处理后形成词集列表;S2,对样本漏洞描述信息集合使用TF‑IDF算法和IG算法对每个词的权重进行计算,获取重要特征词集列表;S3,根据重要特征词集列表生成词向量空间,把每一条漏洞描述信息表述成一个m维的向量,m是重要特征词集中特征词的数量;S4,使用DNN模型获得软件漏洞分类器;S5,新的漏洞描述信息集合进行分类。本发明基于TF‑IDF和IG算法构建深度神经网络漏洞自动分类模型,降低了高维词向量空间的维度,能够适应不断更新的软件漏洞数据集,有效地处理词向量空间的高维性和稀疏性,在准确率、召回率、精度等多维评价指标中表现出较好性能。

    一种基于多层次博弈模型的网络风险分析和最优主动防御方法

    公开(公告)号:CN108683664B

    公开(公告)日:2019-07-16

    申请号:CN201810461655.7

    申请日:2018-05-15

    Abstract: 本发明针对网络中存在的诸多漏洞可能对网络造成一定程度影响这一问题,提出一种基于多层次博弈模型的网络风险分析和最优主动防御方法,步骤一、根据扫描网络得到的安全漏洞以及可能的防御策略构建网络风险分析防御模型;步骤二、根据步骤一所述的网络风险分析防御模型构造判断矩阵;步骤三、根据该攻防博弈收益矩阵求取理论攻防最优策略;步骤四、根据步骤三得到的攻防最优策略为基础,根据判断矩阵更新算法更新判断矩阵,重新计算风险权重;步骤五:比较步骤二与步骤四中所述的判断矩阵,计算步骤四较步骤二的风险权重下降百分比,以此来评估防御策略的优劣。

Patent Agency Ranking