-
公开(公告)号:CN117055302A
公开(公告)日:2023-11-14
申请号:CN202311111879.2
申请日:2023-08-31
Abstract: 本发明涉及一种激光直写装置及激光直写方法,包括线光输出单元、第一反射镜、转动单元和调制面,所述线光输出单元对所述第一反射镜入射线形光,所述第一反射镜将线形光反射至所述调制面上,所述第一反射镜通过所述转动单元相对所述线光输出单元和所述调制面转动设置。本发明采用线形光对光刻胶进行直写,仅需要第一反射镜依靠转动单元在单个平面内转动即可,既不需要平移,也不需要在其他平面内转动,第一反射镜所需活动自由度明显下降,对应的线形光在调制面上仅需要在一个维度上进行移动扫描即可,降低了直写过程所需自由度,简化了直写过程,直写效率较高。同时扫描过程的简化也使激光直写装置获得了简化,有利于整个激光直写装置的小型化。
-
公开(公告)号:CN117055297A
公开(公告)日:2023-11-14
申请号:CN202310820298.X
申请日:2023-07-05
Abstract: 本发明公开了一种基于光学/化学三维暗斑的超分辨激光直写方法和装置。本发明使用三束激光,分别以实心斑和空心斑聚焦照射光刻胶,三束光在三维空间中心对准,利用光引发剂的STED特性以及抑制剂对自由基扩散的限制,从而在光刻胶中获得最小达到亚50nm线宽,最小周期可到亚100nm。相比于已有的技术,本发明通过抑制边缘聚合,抑制剂阻止自由基扩散,进一步减小线宽,提高刻写精度、分辨率,本发明有望在传感器件、超材料、掩膜版制备等方面获得应用。
-
公开(公告)号:CN117031891A
公开(公告)日:2023-11-10
申请号:CN202311112422.3
申请日:2023-08-31
Abstract: 本发明涉及一种激光直写系统及激光直写方法,包括激发光源、抑制光源、微镜阵列和位移台,所述微镜阵列包括阵列排布的至少两个微镜,所述微镜具有第一角度状态和第二角度状态;所述激发光源通过处于第一角度状态的所述微镜照射至所述位移台处,以形成刻写图案,所述抑制光源通过处于第二角度状态的所述微镜照射至所述位移台处,以形成抑制光斑,所述抑制光斑位于所述刻写图案的边界处。
-
公开(公告)号:CN116754066A
公开(公告)日:2023-09-15
申请号:CN202310425344.6
申请日:2023-04-18
Abstract: 本申请提供一种分光检测系统和光束指向检测与稳定系统。分光检测系统用于检测光束指向控制组件出射的光束的性质,包括分光检测组件和控制器。分光检测组件包括分光组件和检测组件,分光组件用于反射和透射光束,检测组件用于接收光束反射形成的反射光束,检测反射光束的性质。控制器连接于检测组件和光束指向控制组件之间,控制器用于根据反射光束的性质,确定光束调整量,控制光束指向控制组件根据光束调整量调制光源发出的光束。本申请提供的分光检测系统通过设置控制器根据检测组件检测得到的光束性质,控制光束指向控制组件调制光源发出的光束,降低光束在长距离传播的过程中的偏移和光学器件引入的指向误差,提高光束的稳定性。
-
公开(公告)号:CN114527629B
公开(公告)日:2022-08-05
申请号:CN202210417713.2
申请日:2022-04-21
Abstract: 本发明公开了一种基于双暗斑联合抑制的超分辨光刻方法及光刻胶,该方法基于边缘光抑制纳米刻写技术,通过双抑制光斑的结合实现在保证最大抑制强度不变的前提下压缩暗斑抑制区域,一定程度解决由抑制光过强引起刻写线宽变粗的难题,实现等效刻写光斑的压缩,从而进一步缩小纳米刻写线宽。利用本发明的方法可以实现更高精度的纳米加工能力,可为微机械、微光学、微流控等领域提供更高精度的加工手段。
-
公开(公告)号:CN114527629A
公开(公告)日:2022-05-24
申请号:CN202210417713.2
申请日:2022-04-21
Abstract: 本发明公开了一种基于双暗斑联合抑制的超分辨光刻方法及光刻胶,该方法基于边缘光抑制纳米刻写技术,通过双抑制光斑的结合实现在保证最大抑制强度不变的前提下压缩暗斑抑制区域,一定程度解决由抑制光过强引起刻写线宽变粗的难题,实现等效刻写光斑的压缩,从而进一步缩小纳米刻写线宽。利用本发明的方法可以实现更高精度的纳米加工能力,可为微机械、微光学、微流控等领域提供更高精度的加工手段。
-
公开(公告)号:CN113515017A
公开(公告)日:2021-10-19
申请号:CN202110388078.5
申请日:2021-04-12
IPC: G03F7/20
Abstract: 本发明公开了一种基于声光偏转(AOD)扫描的双光束高速激光直写方法和装置,该装置包括两路光,其中一路光在汇聚到样品面上产生实心光斑,用于激发光刻胶的聚合反应;另一路光汇聚到样品面上产生空心光斑,用于抑制或终止光刻胶聚合反应中的某个关键步骤,从而抑制光聚合反应。两束光进行对准合束后经过两个紧靠并互相垂直放置着的AOD,其中一个进行x方向扫描,另一个进行y方向扫描,两者同时实现光束在样品面上高速高精度的二维扫描。利用本发明,有望实现速度和分辨率分别达10^6点/s和亚50 nm的高速、超分辨激光直写,为超分辨激光微纳加工技术提高加工效率提供有力支撑。
-
公开(公告)号:CN112666804A
公开(公告)日:2021-04-16
申请号:CN202110049599.8
申请日:2021-01-14
IPC: G03F7/20
Abstract: 本发明公开了一种基于干涉点阵和DMD的边缘光抑制阵列并行直写装置,该装置主要包含两路光:一路光通过偏振分束器产生偏振方向两两相同的四光束,四光束在物镜焦平面重叠,进行振幅和强度叠加后产生干涉点阵,点阵暗斑用作抑制涡旋光阵列;另一路光通过数字微镜器件DMD产生激发光点阵,并投影到物镜焦平面上和抑制涡旋光阵列重合,在大视场中可得到万束量级以上边缘光抑制阵列,可用于高通量超分辨的双光子直写。
-
公开(公告)号:CN114326322B
公开(公告)日:2024-02-13
申请号:CN202111528094.6
申请日:2021-12-14
Abstract: 本发明公开了一种基于微透镜阵列和DMD的高通量超分辨激光直写系统。该系统使用一片包括m×m个镜元的微透镜阵列产生m×m束并行光束,结合紫外飞秒激光器、四光束分束器、DMD、合束器、平板光束位移元件、透镜、物镜搭建而成的光路在物镜焦平面上形成2m×2m个焦点点阵分布,将基于微透镜阵列和DMD的激光直写通量提高到原来的4倍,大幅提高直写速度,且每个焦点可由DMD独立调节光强,从而结合直写算法实现任意图形的并行超分辨激光直写。本发明可应用于微透镜阵列、衍射光学元件、光刻掩模板等的快速加工制造。
-
公开(公告)号:CN112596349B
公开(公告)日:2024-01-19
申请号:CN202110046632.1
申请日:2021-01-14
IPC: G03F7/20
Abstract: 本发明公开一种基于多点阵产生和独立控制的双光子并行直写装置及方法,主要包含三个核心元件:数字微镜阵列DMD、空间光调制器SLM和微透镜阵列MLA,DMD将有效像素区域等分成N×N个单元,一个单元对应一个光斑,对DMD每个单元包含的m×m个微镜进行独立开关,实现各单元光斑强度和均匀度的独立调控;SLM将有效像素区域等分成N×N个单元,并与入射的各单元光斑一一对应并独立进行相位控制;MLA用于生成焦点阵列,其微透镜数N×N决定了点阵的数量,该点阵随后经凸透镜和物镜成像到物镜焦平面上进行加工,该装置与方法具有灰度光刻的功能,能够快速加工任意形状且高均匀度的曲面结构及真三维微结构,可应用于超分辨光刻等领域。
-
-
-
-
-
-
-
-
-