输电塔风灾易损性的分析方法和分析装置

    公开(公告)号:CN113011770A

    公开(公告)日:2021-06-22

    申请号:CN202110353006.7

    申请日:2021-03-31

    Abstract: 本申请公开了输电塔风灾易损性的分析方法和分析装置,其中分析方法包括获得风速时程样本和输电塔模型,其中,输电塔模型包括输电塔的结构信息和材料信息;将风速时程样本处理为风压时程,并根据风压时程对输电塔模型进行非线性时程分析,得到概率风灾模型,其中概率风灾模型包括最大风速对应的结构响应峰值的对数均值和对数标准差;根据概率风灾模型计算输电塔在最大风速下的失效概率。通过上述方法,本申请的分析过程计算相较现有技术的简单,可以提高分析效率,从而高效、准备地获得输电塔风灾易损性的分析。并且,通过本方法所获得的易损性曲线不是锯齿状,因此也无需进行额外的平滑处理,步骤更加简洁。

    一种子母构型的索并联机器人

    公开(公告)号:CN107116532A

    公开(公告)日:2017-09-01

    申请号:CN201710175357.7

    申请日:2017-03-22

    CPC classification number: B25J9/003

    Abstract: 本发明实施例公开了一种子母构型的索并联机器人,用于解决现有的索并联机器人系统,多用于大面积无障碍区域,对变电站等障碍较多的地方适应能力较差,尤其是需要靠近看表显读数时,容易产生绳索和设备的干涉与缠绕等问题的技术问题。本发明实施例包括:第一驱动索固定器、第一驱动索、第一驱动器、母机器人、第二驱动索、子机器人、第二驱动器;第一驱动索的一端与母机器人连接,第一驱动索的另一端与第一驱动索固定器连接;第一驱动器与第一驱动索的另一端连接,用于控制驱动母机器人;母机器人通过第二驱动索与子机器人连接;第二驱动器与第二驱动索连接,用于控制驱动子机器人。

    一种可越障的索并联机器人

    公开(公告)号:CN106737611A

    公开(公告)日:2017-05-31

    申请号:CN201710174838.6

    申请日:2017-03-22

    CPC classification number: B25J9/003 B25J9/1666

    Abstract: 本发明实施例公开了一种可越障的索并联机器人,用于解决现有的索并联机器人系统,多用于大面积无障碍区域,对变电站等障碍较多的地方适应能力较差的技术问题。本发明实施例包括:机器人、四根驱动索、四个驱动索固定点、四个驱动索控制器、四根冗余索、四个冗余索固定点、四个冗余索控制器;机器人的四个角分别连接驱动索的一端,驱动索的另一端经驱动索固定点与驱动索控制器连接;机器人的四个角还分别连接冗余索的一端,冗余索的另一端经冗余索固定点与冗余索控制器连接;驱动索固定点设置于机器人运动空间的四个边角上,冗余索固定点设置于以机器人运动空间中的障碍物为中心的正方形的四个边角上。

    一种电站锅炉高温壁面红外检测装置的冷却系统

    公开(公告)号:CN105021287A

    公开(公告)日:2015-11-04

    申请号:CN201510404646.0

    申请日:2015-07-10

    Abstract: 一种电站锅炉高温壁面红外检测装置的冷却系统,由长筒状内窥镜头、红外CCD相机、冷却系统、支架和滑动装置组成,镜头通过固定环支撑于风夹管内套管内壁,固定环周向布有一圈通气孔,风夹管外套管外壁通过滑动装置连接在支架的导轨上,镜头可随风夹管沿镜头轴向移动,镜头后端通过调节法兰与风夹管内套管外壁连接,镜头可通过调节法兰调整图像方向和视场角,红外CCD相机外部套有空冷壳,在支架前缘有一环形风槽,在风夹管、空冷壳和环形风槽上设有冷却压缩空气的进气口,冷却压缩空气通过风夹管流入炉膛,形成保护气模,隔绝炉内高温烟气的热量进入镜头,并削弱烟气中飞灰对镜头的污染作用,从而实现对内窥镜头的冷却和保护。

    锅炉主蒸汽管道宏观位移的非接触式在线测量方法及装置

    公开(公告)号:CN105021168A

    公开(公告)日:2015-11-04

    申请号:CN201510366366.5

    申请日:2015-06-26

    CPC classification number: G01C11/08

    Abstract: 一种锅炉主蒸汽管道宏观位移的非接触式在线测量方法,包括:步骤S1,设立以管道中心线和弹性支吊架的空间坐标系;步骤S2,将弹性支吊架简化为上、下两节刚性杆和中间一节弹簧,在下节刚性杆上分别设立两个标记点;步骤S3,设立高清摄像机并通过无线网桥连接一主控机;步骤S4,采用三维重建算法获取标记点在坐标系中的空间坐标;步骤S5,同样可得到标记点蠕变后的坐标;步骤S6,建立弹性支吊架下节直线方程;步骤S7,结合直线方程与锅炉主蒸汽管道外表面的曲线方程,得到直线l1方程与锅炉主蒸汽管道外表面的交点B′的坐标;考虑误差后,可准确计算出管道在各个方向的宏观位移。本发明能在线非接触地获得具有较高稳定性和较高精度的管道宏观位移。

Patent Agency Ranking