-
公开(公告)号:CN115019087A
公开(公告)日:2022-09-06
申请号:CN202210557333.9
申请日:2022-05-20
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/77
Abstract: 本发明提供一种小样本视频分类和分类模型训练方法及其装置,涉及计算机视觉技术领域,所述分类方法包括:将小样本分类任务输入预先构建的收敛的压缩域长短时Cross‑Transformer模型,获取压缩域信息;基于压缩域信息,获取短时融合的帧特征;基于短时融合的帧特征,获取查询特征,并输出基于查询特征获取的小样本分类任务中查询视频对各个查询类别原型所属支撑类别的分类分数,其中,分类分数最大的支撑类别用于表示查询视频的分类结果。本发明可实现少量示例视频下的快速、高精度、高效率的小样本视频分类。