-
公开(公告)号:CN110213724A
公开(公告)日:2019-09-06
申请号:CN201910412262.1
申请日:2019-05-17
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司 , 长安通信科技有限责任公司
Abstract: 一种伪基站运动轨迹的识别方法,包括:从数据库中提取一段时长内的所有切换事件信令,计算每个基站在一定时间周期内的切换事件指标,并识别出疑似受伪基站设备影响的异常基站,将异常基站信息保存在异常基站识别记录表中,同时构建伪基站信息表;分别计算异常基站识别记录表中每个异常基站和伪基站信息表中每个基站之间的位置距离和发现时间差,获得异常基站识别记录表中每个异常基站的轨迹编号,然后将获得轨迹编号的异常基站信息写入伪基站信息表;根据伪基站信息表中基站的位置、发现时间和轨迹编号,获得每个伪基站的运动轨迹。本发明属于信息技术领域,能通过识别受伪基站设备影响而导致信令表现异常的基站,实现伪基站运动轨迹的准确跟踪。
-
公开(公告)号:CN119863846A
公开(公告)日:2025-04-22
申请号:CN202411792800.1
申请日:2024-12-07
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提供了一种人脸匿名化方法,包括:筛选从视图数据中检出的人脸图像;从所述人脸图像中获取关键点的特征向量和高维嵌入的表征向量;构造与所述表征向量同维度的随机向量,将所述表征向量结合所述随机向量和为所述随机向量设定的噪声系数,计算扰动表征向量;将所述扰动表征向量和所述特征向量拼接后获得随机扰动后的人脸图像,以所述随机扰动后的人脸图像替换所述人脸图像。本发明有益效果:通过对人脸属性特征的的修改,不改变人脸基本状态的情况下就可以隐藏特定个人的属性特征信息,同时不会影响视觉效果。
-
公开(公告)号:CN119741919A
公开(公告)日:2025-04-01
申请号:CN202411802628.3
申请日:2024-12-09
Applicant: 国家计算机网络与信息安全管理中心
IPC: G10L15/22 , G10L13/02 , G10L21/007 , G06F40/151 , G10L25/30
Abstract: 本发明提供了一种语音匿名化方法,包括:将语音数据按照激活检测结果分割为语音数据片段,转写所述语音数据片段为文本序列;由敏感词列表和所述文本序列对比以获取敏感词,以敏感词替换符替换所述敏感词,生成脱敏文本片段;根据所述脱敏文本片段生成文本嵌入表征码,与随机声纹嵌入表征码拼接,生成拼接表征码;通过后向解码网络将所述拼接表征码解码为时频谱后,声码器将所述时频谱转化为音频波形。本发明有益效果:通过对语音声纹的修改和敏感词的提出,实现的在不改变语音数据属性的条件下,对语音数据脱敏和匿名化。
-
公开(公告)号:CN113761919B
公开(公告)日:2025-01-07
申请号:CN202010500426.9
申请日:2020-06-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06F40/211
Abstract: 本发明提供一种口语化短文本的实体属性提取方法及电子装置,包括对口语化短文本切词及词性标注,并对各标注词性的词语进行命名主体识别,得到实体词语;将口语化短文本映射为主谓宾三元组,获取主谓宾三元组中各词语的依存关系,并使用实体词语对主谓宾三元组中各词语进行实体识别;当主谓宾三元组中的主谓宾满足一触发规则时,提取宾语词组作为实体属性。本发明采用词性标注、依存句法分析、实体识别以及结合触发词词性规则的综合方法,更加有针对性的提取了口语化短数据的实体属性信息,丰富了口语化短文本领域的结构化信息抽取方法。
-
公开(公告)号:CN117768343A
公开(公告)日:2024-03-26
申请号:CN202311587718.0
申请日:2023-11-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/02 , H04L43/062 , H04L47/70
Abstract: 本发明提供一种针对隧道流量的关联方法和装置,其中所述方法包括:获取预建立的网络隧道的多个入口节点流和多个出口节点流;确定与每个出口节点流对应的候选入口节点流,分别计算多个候选入口节点流的累计传输量距离;将每个出口节点流输入至自编码网络,输出对应的映射入口节点流,分别计算映射入口节点流和多个候选入口节点流的降噪距离;将多个候选入口节点流输入至优化表示生成器,分别输出多个候选入口节点流之间的优化表示距离;根据多个候选入口节点流的累计传输量距离、和映射入口节点流的降噪距离以及多个候选入口节点流之间的优化表示距离,对候选入口节点流进行筛选,确定每个出口节点流对应的目标入口节点流。
-
公开(公告)号:CN116775943A
公开(公告)日:2023-09-19
申请号:CN202310498578.3
申请日:2023-05-06
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/901 , G06F16/906 , G06F18/25 , G06N3/088
Abstract: 本发明公开了一种基于图挖掘的电信异常检测方法。克服了现有技术在进行电信异常检测时检测效率低和检测不够精准等问题。检测方法对通联记录数据处理后组织成图,将图由全图划分成一系列子图,进行图表征的局部学习和全局学习,获得节点级别的本地表征和子图级别的全局表征,通过异常检测算法得到每个子图的异常得分,选取异常得分最高的部分子图,通过异常检测算法得到这些子图中每个节点的异常得分,取异常得分最大的部分节点作为最终检测结果输出。此检测方法能实现大规模图中电信异常行为高效准确的检测。
-
公开(公告)号:CN115914056A
公开(公告)日:2023-04-04
申请号:CN202110914688.4
申请日:2021-08-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/50 , H04L65/1104 , H04L67/02 , H04L67/141
Abstract: 本申请提供一种网络电话服务端的识别方法及装置、系统、电子设备,该方法包括:获取SIP流量,对SIP流量进行分析,获得目的IP信息;根据目的IP信息,对目标服务端的通信端口进行扫描,查找开放服务的目标端口;与开放服务的目标端口建立连接,并向开放服务的目标端口发送HTTP报文;根据HTTP报文的响应消息,确定目标服务端是否为网络电话服务端。由此可以高效地过滤出网络中大部分的VoIP运营平台信息,比传统的被动解析方式需要的资源更少且更加灵活,比传统的主动方式更加高效、目的性更强。在消耗少量资源的情况下,可以高效的进行定向分析,大大提高整体分析的高效性。
-
公开(公告)号:CN115829316A
公开(公告)日:2023-03-21
申请号:CN202211313888.5
申请日:2022-10-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q10/0635 , H04M3/22 , G06Q10/04 , G06Q30/018 , G06Q30/0202 , G06Q30/0201 , G06F18/214
Abstract: 本申请提供一种信息预警方法、装置、电子设备及存储介质。该方法包括:获取电话语音数据,并根据电话语音数据确定风险主叫号码和风险被叫号码;根据风险被叫号码确定风险被叫用户数据,并根据风险主叫号码确定风险主叫用户数据;获取训练用户画像和训练交易数据,并根据风险被叫用户数据、风险主叫用户数据、训练用户画像和训练交易数据训练预测模型;根据通信平台获取平台用户数据,并利用预测模型根据平台用户信息预警潜在风险用户;其中,平台用户数据,包括:平台用户画像和平台交易数据。本申请可以根据电话语音数据和平台用户数据对潜在的风险用户进行预测,从而提高筛查效率,一定程度上提高了用户交易数据的安全性。
-
公开(公告)号:CN113761919A
公开(公告)日:2021-12-07
申请号:CN202010500426.9
申请日:2020-06-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/295 , G06F40/211
Abstract: 本发明提供一种口语化短文本的实体属性提取方法及电子装置,包括对口语化短文本切词及词性标注,并对各标注词性的词语进行命名主体识别,得到实体词语;将口语化短文本映射为主谓宾三元组,获取主谓宾三元组中各词语的依存关系,并使用实体词语对主谓宾三元组中各词语进行实体识别;当主谓宾三元组中的主谓宾满足一触发规则时,提取宾语词组作为实体属性。本发明采用词性标注、依存句法分析、实体识别以及结合触发词词性规则的综合方法,更加有针对性的提取了口语化短数据的实体属性信息,丰富了口语化短文本领域的结构化信息抽取方法。
-
公开(公告)号:CN113761903A
公开(公告)日:2021-12-07
申请号:CN202010504536.2
申请日:2020-06-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F40/30 , G06F40/232 , G06F16/35 , G06N3/04
Abstract: 本发明提出一种针对海量高噪音口语化短文本的文本筛选方法,属于自然语言处理领域,通过对训练语料和待筛选的目标文本进行预处理;对预处理后的训练语料中的标注的正类语料进行句式信息提取,区分出业务强相关句式和弱相关句式;利用提取的句式信息对预处理后的目标文本进行句式匹配,将业务强相关句式的匹配结果归为正类文本,对业务弱相关句式的匹配结果进行以下步骤的处理;对目标文本和训练语料都进行文本处理,将处理后的文本转化为词向量表示;使用训练语料的词向量表示训练文本分类模型,将目标文本的词向量表示输入到训练好的文本分类模型中对文本进行分类,实现对目标文本的文本筛选。
-
-
-
-
-
-
-
-
-