基于无监督学习的诈骗呼叫序列检测方法

    公开(公告)号:CN110059889B

    公开(公告)日:2021-05-28

    申请号:CN201910344174.2

    申请日:2019-04-26

    Abstract: 本发明提供了基于无监督学习的诈骗呼叫序列检测方法,包括:构造主叫呼叫序列和呼叫二部图;在呼叫二部图中进行随机游走过程,推断各主叫号码对应节点的低维嵌入表示向量;获取各被叫号码的唯一标识,以主叫号码对应节点的低维嵌入表示向量以及第M个被叫号码对应的唯一标识为神经网络的输入,以第M+1个被叫号码对应的唯一标识为输出,训练获得神经网络预测模型;获取待检测主叫呼叫序列中主叫号码对应节点的低维嵌入表示向量以及各被叫号码对应的唯一标识,并输入所述神经网络预测模型,若得到的预测唯一标识与实际唯一标识的误差大于设定阈值,则判断主叫号码为诈骗号码。本发明中提出的方法容易实现并行化计算,可以实现较高的检测效率。

    基于无监督学习的诈骗呼叫序列检测方法

    公开(公告)号:CN110059889A

    公开(公告)日:2019-07-26

    申请号:CN201910344174.2

    申请日:2019-04-26

    Abstract: 本发明提供了基于无监督学习的诈骗呼叫序列检测方法,包括:构造主叫呼叫序列和呼叫二部图;在呼叫二部图中进行随机游走过程,推断各主叫号码对应节点的低维嵌入表示向量;获取各被叫号码的唯一标识,以主叫号码对应节点的低维嵌入表示向量以及第M个被叫号码对应的唯一标识为神经网络的输入,以第M+1个被叫号码对应的唯一标识为输出,训练获得神经网络预测模型;获取待检测主叫呼叫序列中主叫号码对应节点的低维嵌入表示向量以及各被叫号码对应的唯一标识,并输入所述神经网络预测模型,若得到的预测唯一标识与实际唯一标识的误差大于设定阈值,则判断主叫号码为诈骗号码。本发明中提出的方法容易实现并行化计算,可以实现较高的检测效率。

Patent Agency Ranking