-
公开(公告)号:CN110673877B
公开(公告)日:2020-09-01
申请号:CN201910780790.2
申请日:2019-08-22
Applicant: 成都信息工程大学
Abstract: 本发明涉及一种基于手动向量化的并行计算方法,方法包括分析程序中的热点部分,并记录热点部分数组元素字长;根据任务精度要求,对热点部分的数组进行対界操作;对热点程序中核心函数中的不同精度的函数进行合并,对核心函数调用的函数进行降精度处理,将标准数学库函数改写成自定义数学库函数;对热点程序中的变量和自定义数学库函数进行手动向量化。通过对函数进行降精度,对变量、数组和函数进行手动向量化,使得基本数学函数也能一次指令对多个数据进行运算,大大提高了运算效率。
-
公开(公告)号:CN110163333B
公开(公告)日:2020-06-09
申请号:CN201810021291.0
申请日:2018-01-10
Applicant: 成都信息工程大学
IPC: G06N3/04
Abstract: 本发明涉及一种卷积神经网络的并行优化方法,其包括:用winograd算法f(2x2,3x3)进行卷积神经网络的卷积核运算,以降低时间复杂度并减少乘法运算次数;对不存在循环数据依赖的for循环结构部分,使用OpenMP开辟多个线程进行运算;对模式相同的数据运算部分进行向量化处理,使其能够实现一次指令多次运算。采用本发明的方法改进的卷积神经网络程序能够大幅度提高并行的效率、减少运算的复杂度,从根本上降低运算开销,降低程序的运行时间。
-
公开(公告)号:CN108132872B
公开(公告)日:2020-04-03
申请号:CN201810021292.5
申请日:2018-01-10
Applicant: 成都信息工程大学
Abstract: 本发明涉及一种基于并行超算网格云平台的GRAPES系统优化方法,其包括:S1)载入测试数据集并运行系统,分别进行系统级测试、通信级测试和函数级测试,其包括:S1.1)系统级测试;S1.2)通信级测试;S1.3)函数级测试:对调用的函数进行监控,获取函数的运行特征。S2)根据导出的系统特征文件进行测试结果分析,其包括:S2.1)系统测试结果分析;S2.2)MPI通信级测试结果分析;S2.3)函数级测试结果分析。S3)根据分析结果进行优化处理,优化处理包括:向量化、负载均衡、使用库函数替代GRAPES_GFS中的函数。本发明解决了Grapes在并行超算网格平台上的优化问题,提高了系统运行效率。
-
公开(公告)号:CN110673877A
公开(公告)日:2020-01-10
申请号:CN201910780790.2
申请日:2019-08-22
Applicant: 成都信息工程大学
Abstract: 本发明涉及一种基于手动向量化的并行计算方法,方法包括分析程序中的热点部分,并记录热点部分数组元素字长;根据任务精度要求,对热点部分的数组进行対界操作;对热点程序中核心函数中的不同精度的函数进行合并,对核心函数调用的函数进行降精度处理,将标准数学库函数改写成自定义数学库函数;对热点程序中的变量和自定义数学库函数进行手动向量化。通过对函数进行降精度,对变量、数组和函数进行手动向量化,使得基本数学函数也能一次指令对多个数据进行运算,大大提高了运算效率。
-
公开(公告)号:CN110162736A
公开(公告)日:2019-08-23
申请号:CN201810021260.5
申请日:2018-01-10
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于消去树的大型稀疏对称线性方程组并行处理方法,其包括以下步骤:步骤1:对A矩阵进行LU分解;步骤2:进行前推回代,计算Ly=b,求出y,然后Ux=y,求出x;采用基于消去树的双重任务划分法并行前推回代;步骤3:进行X数组重组,其包括:重组X数组,使得单个线程计算所需的数据位于内存中连续的空间;步骤4:进行循环合并,将除法运算与X数组重组等循环合并入前推回代过程,减小循环迭代开销与OpenMP线程创建开销。本发明通过基于消去树的双重任务划分法进行并行计算,充分利用了多核计算资源,显著提高了大型稀疏矩阵前推回代速度。
-
公开(公告)号:CN107424154A
公开(公告)日:2017-12-01
申请号:CN201710267501.X
申请日:2017-04-21
Applicant: 成都信息工程大学
Abstract: 本发明涉及一种基于动态分配的分水岭图像分割并行方法,将图像平均分成k个基础子图,并将基础子图动态分配给k个线程同时处理,并让先处理完基础子图的线程分担任务较重的线程的任务;然后对基础子图进行分水岭分割,通过排序和浸没对像素点进行处理;再通过改进灰度准则对过分割的基础子图进行后处理;最后采用层叠拼接的方法对基础子图进行并行拼接。本发明的方法通过将基础子图动态分配给多个线程同时进行处理,提高了算法的效率,采用改进灰度准则,具有一定的噪声抑制作用,增强了算法的鲁棒性,最后采用层叠拼接基础子图,进一步的提高了算法效率。
-
-
-
-
-