-
公开(公告)号:CN112176719A
公开(公告)日:2021-01-05
申请号:CN202011073021.8
申请日:2020-10-09
Applicant: 哈尔滨工业大学(威海)
IPC: D06M11/77 , D06M11/38 , D06M11/64 , D06M101/40
Abstract: 本发明C/SiC壳核结构复合纤维制备方法,包括如下步骤:步骤A、原料准备:对碳纤维原料预处理,获得分散性良好、表面活性基团增加的碳纤维Ⅰ;混合熔盐原料获得混合物熔盐;由硅溶胶、炭黑和硅烷偶联剂经混合、干燥、破碎获得干凝胶和炭黑的混合粉体;步骤B、成型:将混合物熔盐与混合粉体混合获得包埋料,将碳纤维Ⅰ处于包埋料包埋下进行烧结、冷却、分离后获得C/SiC壳核结构复合纤维。本发明的制备方法采用熔盐熔解析出法,在较低温度下制备出表面SiC纳米结构壳层的C/SiC复合纤维,具有良好的壳核结构,具有良好的拉伸强度、弹性模量和吸波性能。
-
公开(公告)号:CN111304653A
公开(公告)日:2020-06-19
申请号:CN202010251138.4
申请日:2020-04-01
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及电磁屏蔽功能膜层制备技术领域,具体的说是一种能够满足不同电磁波段环境下屏蔽需求的多频段电磁波屏蔽复合膜层及其制法和应用,其特征在于由内至外依次设有打底镀层、梯度电磁屏蔽膜层、铁镀层以及外镀层,所述梯度电磁屏蔽膜层包括至少两层铁镍合金复合镀层,所述铁镍合金复合镀层为下列中的任意一种:镀层合金中Fe与Ni的质量比为7:3,主要成分为Fe64Ni36;或镀层合金中Fe与Ni的质量比为3:7,主要成分为Fe34Ni66;或镀层合金中Fe与Ni的质量比为1:3,主要成分为Fe25Ni75;或镀层合金中Fe与Ni的质量比为3:1,主要成分为Fe75Ni25。
-
公开(公告)号:CN110835123A
公开(公告)日:2020-02-25
申请号:CN201911250054.2
申请日:2019-12-09
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
Abstract: 本发明涉及石墨纳米片复合磁性粒子制备技术领域,具体的说是一种特别适用作吸波材料具有钴氧化物-钴-石墨纳米片的片-核-壳微观结构的磁性复合的钴金属颗粒及钴氧化物复合石墨纳米片粉体的制备方法,其特征在于将钴金属颗粒复合石墨纳米片的复合粉体,均匀的分散于有氧化剂的水溶液当中,搅拌分散,确保复合粉体与氧化性溶液充分接触,使金属钴表面产生氧化包覆层,从而得到石墨纳米片复合钴及钴氧化物复合粉体,微观结构上具有片-核-壳式旳形貌,具有制备流程工艺简单,易于操作,无环保压力,可大规模量产等显著的优点。
-
公开(公告)号:CN106673700B
公开(公告)日:2019-10-18
申请号:CN201611096173.3
申请日:2016-12-02
Applicant: 哈尔滨工业大学(威海)
IPC: C04B38/08 , C04B38/00 , C04B26/10 , C04B26/16 , C04B26/12 , C04B26/28 , C04B26/06 , C04B26/04 , C04B26/14 , B28B3/26
Abstract: 本发明提供一种石墨泡沫的制备方法,以石墨纳米片为原料,添加少量的高分子粘结剂,通过模板成型,干燥后形成石墨泡沫。本发明的制备方法简单、方便,可成型各种形状的石墨泡沫,而且所制备的石墨泡沫密度可控、孔隙较均匀。本发明制备的石墨泡沫还具有较高的抗压强度、较低的电阻、能吸油、高导热等优点,可广泛用于散热器、导热垫、电磁屏蔽材料等领域,具有广大的应用前景。
-
公开(公告)号:CN106744921B
公开(公告)日:2019-04-30
申请号:CN201611245448.5
申请日:2016-12-29
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种改性工艺,具体的说涉及一种在石墨纳米片表面附着二氧化钛工艺的电热涂膜用的TiO2/石墨纳米片复合粉体的制备方法,其以硫酸氧钛为钛源,通过水热法在石墨纳米片表面形成一层均匀的二氧化钛薄膜。对照现有技术,本发明技术简单,无设备要求,石墨纳米片上的TiO2附着均匀,石墨纳米片的比表面积增加一倍,TiO2改性的复合粉体,可用于电热材料,光降解,电池电极等多种不同领域。
-
公开(公告)号:CN109219336A
公开(公告)日:2019-01-15
申请号:CN201811426965.1
申请日:2018-11-27
Applicant: 哈尔滨工业大学(威海) , 威海云山科技有限公司
IPC: H05K9/00
CPC classification number: H05K9/0081
Abstract: 本发明提出一种基于聚氨硼烷的BN/C微纳米复合吸波材料的制备方法,包括以下步骤:步骤1、将GNFs或者CNTs均匀分散到氨硼烷溶液中,启动搅拌器搅拌,打开水浴加热器加热,温度设为90℃~100℃,反应时间为23h~25h,反应结束后即可得到聚氨硼烷和GNFs或者CNTs的混合粘稠状液体,其中所述聚氨硼烷的摩尔百分含量为20%~80%,GNFs或者CNTs的摩尔百分含量为20%~80%;步骤2、将步骤1所得的液体放在容器中进行90℃~100℃的常压蒸馏,以获得先驱体;步骤3、将上述先驱体在保护气体环境下进行烧结,烧结温度为1200℃~1400℃时,在保护气体环境下保持该温度0.5h~1.5h,即保温时间为0.5h~1.5h,之后即可得到BN/C微纳米复合吸波材料。通过上述方法制备的BN/C微纳米复合吸波材料具有良好的吸波性能。
-
公开(公告)号:CN104891485A
公开(公告)日:2015-09-09
申请号:CN201510307618.7
申请日:2015-06-08
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种纳米石墨片的制备方法,其以的膨胀石墨粉体为原料,将膨胀石墨粉体按0.5~10g/L的比例添加到分散溶剂中;而后通过离心泵将混合溶液循环加入到超声波粉碎机中;启动超声波粉碎机对混合溶液进行超声剥离纳米化作业40分钟至72小时,得到纳米石墨片溶液。所述分散溶剂为乙醇溶液,超声纳米化作业得到纳米石墨片乙醇溶液,所述纳米石墨片乙醇溶液静置后,过滤、干燥得到厚度20-50纳米的石墨纳米片粉体。本发明制备过程简单,不需要复杂设备,且连续操作,产能效率高,适合工业化大批量连续生产。
-
公开(公告)号:CN103360041A
公开(公告)日:2013-10-23
申请号:CN201310307820.0
申请日:2013-07-22
Applicant: 哈尔滨工业大学(威海)
IPC: C04B35/19 , C04B35/622
Abstract: 本发明涉及一种碳/二硅酸锂复合陶瓷材料及其制备方法,其以SiO2、Li2O、P2O5、ZnO、CaO、K2O和碳粉为原料,各组份的质量百分比为:SiO267.6~73.6%、Li2O16.9~18.7%、P2O52.3~5.3%、ZnO0.8~3.1%、CaO1.1~2.3%、K2O1.8~5.3%、碳粉0.2~0.9%;在1400ºC-1500ºC对上述氧化物组成的玻璃混合料进行晶化热处理,制成基础玻璃体,与碳粉混合球磨后通过热压烧结,高温脱模并随炉冷却,得到碳/二硅酸锂复合陶瓷材料。该材料具有较好的机械性能,强度较高,化学稳定性好,其不同于其他二硅酸锂复合材料的地方在于它的耐磨损性能和自润滑性能较好,适于作为金刚石刀片和金刚石砂轮的修整材料使用。
-
公开(公告)号:CN102061461B
公开(公告)日:2012-06-06
申请号:CN201110024810.7
申请日:2011-01-24
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种稀土转化膜层的制备方法,其以金属材料、金属基复合材料、碳纤维为基体,在预处理过的材料表面上附着异辛酸稀土,将上述表面粘附异辛酸稀土的各种材料慢速加热烘干,加热速率小于5℃/分钟,温度在300℃以下,时间以膜层干燥为准,即在材料表面得到新型的稀土转化膜。本发明膜层制备简便,无设备要求,成膜均匀,耐蚀性能好,可用于在不同种类的金属和金属基复合材料及碳纤维等材料的表面处理。
-
公开(公告)号:CN102061461A
公开(公告)日:2011-05-18
申请号:CN201110024810.7
申请日:2011-01-24
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种稀土转化膜层的制备方法,其以金属材料、金属基复合材料、碳纤维为基体,在预处理过的材料表面上附着异辛酸稀土,将上述表面粘附异辛酸稀土的各种材料慢速加热烘干,加热速率小于5℃/分钟,温度在300℃以下,时间以膜层干燥为准,即在材料表面得到新型的稀土转化膜。本发明膜层制备简便,无设备要求,成膜均匀,耐蚀性能好,可用于在不同种类的金属和金属基复合材料及碳纤维等材料的表面处理。
-
-
-
-
-
-
-
-
-