-
公开(公告)号:CN104844201A
公开(公告)日:2015-08-19
申请号:CN201510312805.4
申请日:2015-06-09
Applicant: 哈尔滨工业大学
IPC: C04B35/488 , C04B35/622
Abstract: 一种利用稳定晶型氧化锆为原料制备氧化锆/钨酸锆复合材料的方法,涉及一种氧化锆/钨酸锆复合材料的制备方法。本发明是要解决现有方法制备的ZrO2/ZrW2O8复合材料存在烧结致密度低,试样易开裂的问题。方法:一、将稳定晶型的氧化锆粉体和钨酸锆粉体混合得物料,然后将物料、氧化锆球石和蒸馏水加入球磨罐中;二、将球磨罐置于球磨机中,球磨得到浆料;三、将浆料过40目筛,然后烘干,用研钵粉碎后过80目筛,封装待烧;四、将待烧的粉末倒入SiC坩埚中,密封后于常压烧结炉中烧结,然后冷却到室温;即得到氧化锆/钨酸锆复合材料。该方法可提高复合材料的烧结致密度,减少试样开裂。本发明用于制备氧化锆/钨酸锆复合材料。
-
公开(公告)号:CN102424596B
公开(公告)日:2013-05-08
申请号:CN201110261934.7
申请日:2011-09-06
Applicant: 哈尔滨工业大学
IPC: C04B35/81 , C04B35/80 , C04B35/56 , C04B35/622
Abstract: SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料及其制备方法,它涉及超高温陶瓷复合材料及其制备方法。本发明解决了现有的ZrC基超高温陶瓷致密度低、成本高的技术问题。SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料由SiC纳米颗粒、SiC晶须和ZrC基体组成;SiC纳米颗粒和SiC晶须作为增强相存在于ZrC基体中。制备方法:将SiC晶须经超声波分散后与SiC纳米颗粒和ZrC粉末混合,再球磨、烘干,再将混合粉装入石墨模具中热压烧结,得到SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料,其致密度为96%~100%,成本低,可用于固体火箭发动机或超高速飞行器。
-
公开(公告)号:CN102424596A
公开(公告)日:2012-04-25
申请号:CN201110261934.7
申请日:2011-09-06
Applicant: 哈尔滨工业大学
IPC: C04B35/81 , C04B35/80 , C04B35/56 , C04B35/622
Abstract: SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料及其制备方法,它涉及超高温陶瓷复合材料及其制备方法。本发明解决了现有的ZrC基超高温陶瓷致密度低、成本高的技术问题。SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料由SiC纳米颗粒、SiC晶须和ZrC基体组成;SiC纳米颗粒和SiC晶须作为增强相存在于ZrC基体中。制备方法:将SiC晶须经超声波分散后与SiC纳米颗粒和ZrC粉末混合,再球磨、烘干,再将混合粉装入石墨模具中热压烧结,得到SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料,其致密度为96%~100%,成本低,可用于固体火箭发动机或超高速飞行器。
-
公开(公告)号:CN116041073B
公开(公告)日:2023-11-10
申请号:CN202310072275.5
申请日:2023-01-16
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/622
Abstract: 本发明提供了一种改性SiBCN陶瓷材料及其制备方法,属于陶瓷基复合材料技术领域,该陶瓷材料的制备方法包括:S1.将液态聚硼硅氮烷进行交联固化、粉碎,得到聚硼硅氮烷粉末;S2.将聚硼硅氮烷粉末与活性填料进行球磨混合、筛分,得到改性聚硼硅氮烷粉末;S3.将所述改性聚硼硅氮烷粉末与液态聚硼硅氮烷混合,经热压成型,得到素坯;S4.将所述素坯进行热解处理,得到所述改性SiBCN陶瓷材料。本发明提供的制备方法工艺简单,成本低,制得的陶瓷材料介电常数低、介电损耗角正切低、耐氧腐蚀,可在极端环境下使用。
-
公开(公告)号:CN116041073A
公开(公告)日:2023-05-02
申请号:CN202310072275.5
申请日:2023-01-16
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/622
Abstract: 本发明提供了一种改性SiBCN陶瓷材料及其制备方法,属于陶瓷基复合材料技术领域,该陶瓷材料的制备方法包括:S1.将液态聚硼硅氮烷进行交联固化、粉碎,得到聚硼硅氮烷粉末;S2.将聚硼硅氮烷粉末与活性填料进行球磨混合、筛分,得到改性聚硼硅氮烷粉末;S3.将所述改性聚硼硅氮烷粉末与液态聚硼硅氮烷混合,经热压成型,得到素坯;S4.将所述素坯进行热解处理,得到所述改性SiBCN陶瓷材料。本发明提供的制备方法工艺简单,成本低,制得的陶瓷材料介电常数低、介电损耗角正切低、耐氧腐蚀,可在极端环境下使用。
-
公开(公告)号:CN108329034A
公开(公告)日:2018-07-27
申请号:CN201810097876.0
申请日:2018-01-31
Applicant: 哈尔滨工业大学
IPC: C04B35/565 , C04B35/582 , C04B35/584
CPC classification number: C04B35/571 , C04B35/581 , C04B35/589 , C04B2235/96
Abstract: 本发明涉及一种富碳先驱体陶瓷的制备方法及制得的富碳先驱体陶瓷,所述方法包括:将碳源与含Si-H键的聚硅聚合物混合均匀,得到混合液;将得到的混合液在65~80℃的条件下保温10~20h,得到混合料;将得到的混合料进行固化,得到固化产物;将得到的固化产物依次进行粉碎、研磨和过筛,得到固化产物的粉末,然后将所述粉末进行压制成型,得到先驱体;将得到的先驱体进行烧结,制得富碳先驱体陶瓷;其中,所述碳源选自由二乙烯基苯、乙烯基乙炔基苯和二乙炔基苯组成的组。本发明方法能够显著提高先驱体陶瓷中碳含量,本发明制备的富碳先驱体陶瓷碳含量高、电导率高。
-
公开(公告)号:CN105859302A
公开(公告)日:2016-08-17
申请号:CN201610217597.4
申请日:2016-04-08
Applicant: 哈尔滨工业大学
IPC: C04B35/589 , C04B35/593 , C04B35/58 , C04B35/80
CPC classification number: C04B35/589 , C04B35/58021 , C04B35/593 , C04B35/806 , C04B2235/5248
Abstract: 原位生成碳纳米线的陶瓷材料的制备方法,涉及陶瓷材料的制备方法。本发明是要解决现有碳纳米线制备工艺繁琐,条件要求高的问题。方法1:一、树脂固化;二、球磨得粉体;三、预压成型;四、高温裂解;五、冷却得原位生成碳纳米线的陶瓷材料。方法2:一、树脂固化;二、球磨得粉体;三、热压烧结;四、冷却得原位生成碳纳米线的陶瓷材料。本发明方法简便不需复杂的设备以及实验步骤,成本低,可在陶瓷材料内部原位生成碳纳米线。对材料的导电性有促进作用。本发明用于陶瓷材料领域。
-
公开(公告)号:CN102674874A
公开(公告)日:2012-09-19
申请号:CN201210176664.4
申请日:2012-05-31
Applicant: 哈尔滨工业大学
IPC: C04B35/81 , C04B35/56 , C04B35/622
Abstract: 一种ZrC-SiC-LaB6三元超高温陶瓷复合材料及其制备方法,它涉及超高温陶瓷复合材料及其制备方法。本发明要解决现有ZrC陶瓷脆性大、致密度低、强度低、韧性低和烧蚀性能较差的问题。方法:将SiC晶须超声分散后,与ZrC、SiC纳米颗粒和LaB6混合后球磨得浆料,将其烘干得混合粉;将混合粉装入石墨模具中,在氩气保护下热压烧结,得到致密度≥98%的陶瓷,质量烧蚀率为0.74~1.11×10-4g/s,线烧蚀率为1.50~2.78×10-3mm/s。该材料用于固体火箭发动机的喉衬喷管、燃气舵,超高速飞行器的鼻锥、翼前缘等耐高温结构件,高温气冷堆包覆燃料颗粒涂层、热光电辐射器涂层等方面。
-
-
-
-
-
-
-