一种双频激励调控活性组分的活化水制备装置和方法

    公开(公告)号:CN116425268B

    公开(公告)日:2025-05-16

    申请号:CN202310382604.6

    申请日:2023-04-12

    Abstract: 本发明公开一种双频激励调控活性组分的活化水制备装置和方法,涉及活化水制备技术领域,装置包括:中控模块、双频电源模块及等离子体发生器模块;中控模块,用于产生并输出第一控制信号和第二控制信号;双频电源模块,与中控模块连接,用于根据第一控制信号和第二控制信号产生并输出双频激励信号;等离子体发生器模块,与双频电源模块连接,用于根据双频激励信号通过高压放电反应生成活性组分不同的等离子体活化水。有效的控制了离子与气体分子/水离子的碰撞过程,从而能够根据用途调控等离子体活化水中ROS和RNS的组成占比,实现了抗微生物及控制植物代谢和发育的效果。

    一种高频激励放电中心等离子体抑制燃烧压力脉动的方法

    公开(公告)号:CN109729634B

    公开(公告)日:2021-07-30

    申请号:CN201811635818.5

    申请日:2018-12-29

    Abstract: 一种高频激励放电中心等离子体抑制燃烧压力脉动的方法,涉及一种抑制热声振荡现象中压力脉动的方法。本发明用等离子体作为一种动态、主动的方式调控燃烧室在一定工况下燃烧过程中出现的压力脉动状态。本发明在燃烧室的火焰根部产生等离子体,使得火焰动态地受到等离子体的影响而受气流扰动的影响减小,释热稳定性相应得到提高,并且火焰热释放的相位和频率得到调整,使得燃烧室脉动能量的放大程度减小,热声振荡的条件被破坏,进而实现燃烧室内压力脉动的减小甚至消失。

    一种高频激励放电中心等离子体与侧面等离子体协同抑制燃烧压力脉动的方法

    公开(公告)号:CN109462928B

    公开(公告)日:2021-06-29

    申请号:CN201811635817.0

    申请日:2018-12-29

    Abstract: 一种高频激励放电中心等离子体与侧面等离子体协同抑制燃烧压力脉动的方法,涉及一种抑制热声振荡现象中压力脉动的方法。本发明用中心等离子体与侧面等离子体协同作为一种动态、主动的方式调控燃烧室在燃烧过程中出现的压力脉动状态。本发明在燃烧室的火焰根部和侧面产生等离子体,根部等离子体动态地影响火焰热释放的频率与相位规律,使得脉动火焰对气流扰动的响应程度发生变化;火焰侧面施加的等离子体通过一定能量输入吸附火焰主体,改变火焰主释热区相对于燃烧室出口的距离,即令燃烧室内压力脉动从燃烧室出口反射的回传路径长度改变,压力脉动与火焰热释放率的相位差发生变化;两处等离子体协同作用、调节而实现燃烧压力脉动的减缓或抑制。

    一种基于电离与加速过程解耦的离子风推力装置

    公开(公告)号:CN111706481B

    公开(公告)日:2021-06-22

    申请号:CN202010564374.1

    申请日:2020-06-19

    Abstract: 本发明涉及一种基于电离与加速过程解耦的离子风推力装置。离子风推力装置包括电离电极、中间电极、集电极、电离电源和加速电源,电离电极与电离电源连接,中间电极与加速电源连接,电离电极与中间电极之间形成电离区,中间电极与集电极之间形成加速区,通过调整电离电源输出电压的大小或电离区的距离改变电离区的带电粒子浓度,实现了电离区的单独控制,通过调整加速电源输出电压的大小或加速区的距离改变加速区的电场强度,实现了加速区的单独控制,即实现了电离与加速的解耦;并且通过电离区与加速区的控制匹配,使带电粒子在加速区的运动过程中完全与中性气体分子发生碰撞并进行能量交换,提高了离子风推力器的电‑动能转换效率。

    一种基于电离与加速过程解耦的离子风推力装置

    公开(公告)号:CN111706481A

    公开(公告)日:2020-09-25

    申请号:CN202010564374.1

    申请日:2020-06-19

    Abstract: 本发明涉及一种基于电离与加速过程解耦的离子风推力装置。离子风推力装置包括电离电极、中间电极、集电极、电离电源和加速电源,电离电极与电离电源连接,中间电极与加速电源连接,电离电极与中间电极之间形成电离区,中间电极与集电极之间形成加速区,通过调整电离电源输出电压的大小或电离区的距离改变电离区的带电粒子浓度,实现了电离区的单独控制,通过调整加速电源输出电压的大小或加速区的距离改变加速区的电场强度,实现了加速区的单独控制,即实现了电离与加速的解耦;并且通过电离区与加速区的控制匹配,使带电粒子在加速区的运动过程中完全与中性气体分子发生碰撞并进行能量交换,提高了离子风推力器的电-动能转换效率。

Patent Agency Ranking