基于深度学习的眼底图像视网膜血管分割方法及系统

    公开(公告)号:CN106408562B

    公开(公告)日:2019-04-09

    申请号:CN201610844032.9

    申请日:2016-09-22

    Abstract: 本发明公开了一种基于深度学习的眼底图像视网膜血管分割方法及系统,包括:对训练集进行数据扩增,并对图像进行增强,用训练集训练卷积神经网络,先使用卷积神经网络分割模型对图像进行分割得到一个分割结果,用卷积神经网络的特征训练随机森林分类器,从卷积神经网络模型中抽取最后一层卷积层输出,并作为随机森林分类器的输入进行像素分类,得到另外一个分割结果,对两个分割结果进行融合得到最终的分割图像,与传统的血管分割方法相比,本方法用很深的卷积神经网络进行特征提取,提取的特征更加充分,分割的准确率和效率也更高。

Patent Agency Ranking