基于分类激活映射自举的路面裂痕分割方法及装置

    公开(公告)号:CN119229130A

    公开(公告)日:2024-12-31

    申请号:CN202411736952.X

    申请日:2024-11-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于分类激活映射自举的路面裂痕分割方法及装置,涉及人工智能、机器视觉领域,方法包括:训练基于深度网络的正常与裂痕路面分类模型;利用类激活映射方法生成路面图像的激活映射图,通过高激活阈值筛选出类别高激活掩码并进行增强操作后,加入路面图像训练集;重复上述步骤,直到达到设定条件;基于训练好的正常与裂痕路面分类模型生成待推理的路面图像的激活映射图,通过裂痕掩码阈值获得待推理的路面图像的裂痕掩码,作为裂痕分割结果。本发明利用分类模型与激活映射,寻找类别高激活掩码更新路面图像训练集,不断迭代优化掩码效果,以改善路面裂痕分割效果,无需对裂痕进行像素级的标注,大大降低了标注成本。

    基于类别余弦映射的绝缘子故障检测方法及装置

    公开(公告)号:CN119228788A

    公开(公告)日:2024-12-31

    申请号:CN202411725027.7

    申请日:2024-11-28

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于类别余弦映射的绝缘子故障检测方法及装置,涉及人工智能、机器视觉领域,包括:从真实数据集合与合成数据集合中获取图像数据、故障标签以及类别标签;利用类别余弦偏置编码将类别偏置编码进图像数据,利用特征提取网络提取编码结果中的空间特征;利用类别余弦偏置解码缓解空间特征中的偏置信息以获得类别特征,利用多标签分类器获取类别特征与类别标签的分类损失;利用分割解码器获取空间特征与故障标签的掩码损失;基于分类损失与掩码损失完成模型训练。本发明将正常、故障绝缘子以及合成图像的类别差异通过余弦偏置编码至图像数据中,引导模型理解合成图像与真实场景中的分布差异,最终提升合成数据在实践中的有效性。

    一种无人机森林火灾风险区块检测方法及系统

    公开(公告)号:CN119027845A

    公开(公告)日:2024-11-26

    申请号:CN202411514321.3

    申请日:2024-10-29

    Abstract: 本发明涉及图像处理与人工智能技术领域,公开了一种无人机森林火灾风险区块检测方法及系统,方法包括:构建基于区块分类的目标检测模型并进行训练,利用训练好的基于区块分类的目标检测模型实现无人机森林火灾风险区块检测;所述基于区块分类的目标检测模型利用区块映射器无人机图像中的不同区块映射为区块特征;利用多阶段采样网络对区块特征进行多种尺度的采样,并利用降维映射层进行尺度对齐,获得多尺度区块特征;通过哈达玛积融合多尺度区块特征,利用区块分类器将融合后的多尺度区块特征映射至区块类别概率。本发明以区域分类方式实现风险区块的定位,避免了现有技术因精确定位导致的庞大计算量,延长无人机可用时间。

    基于微观几何纹理的防伪图像的生成方法及装置

    公开(公告)号:CN118233570B

    公开(公告)日:2024-07-26

    申请号:CN202410605570.7

    申请日:2024-05-16

    Abstract: 本发明公开了一种基于微观几何纹理的防伪图像的生成方法及装置,涉及防伪领域,包括:获取物品对应的唯一序列号、防伪图像的宽和高、防伪图像单元的几何纹理样式;根据唯一序列号生成编码比特流,基于防伪图像单元的几何纹理样式采用对应的加密模式对编码比特流进行加密,生成加密编码比特流;根据防伪图像的宽和高以及加密编码比特流确定防伪图像中防伪图像单元、定位模组和数据模组的数量、大小和起始坐标,根据加密编码比特流以及数据模组和定位模组的几何纹理确定数据模组和定位模组的纹理图案;绘制所有防伪图像单元的定位模组和数据模组,组成防伪图像,解决现有防伪图像防伪特征少、易受噪声干扰、识别效率低、样式可塑性差等问题。

    基于微观几何纹理的防伪图像的生成方法及装置

    公开(公告)号:CN118233570A

    公开(公告)日:2024-06-21

    申请号:CN202410605570.7

    申请日:2024-05-16

    Abstract: 本发明公开了一种基于微观几何纹理的防伪图像的生成方法及装置,涉及防伪领域,包括:获取物品对应的唯一序列号、防伪图像的宽和高、防伪图像单元的几何纹理样式;根据唯一序列号生成编码比特流,基于防伪图像单元的几何纹理样式采用对应的加密模式对编码比特流进行加密,生成加密编码比特流;根据防伪图像的宽和高以及加密编码比特流确定防伪图像中防伪图像单元、定位模组和数据模组的数量、大小和起始坐标,根据加密编码比特流以及数据模组和定位模组的几何纹理确定数据模组和定位模组的纹理图案;绘制所有防伪图像单元的定位模组和数据模组,组成防伪图像,解决现有防伪图像防伪特征少、易受噪声干扰、识别效率低、样式可塑性差等问题。

    一种基于超限学习机和颜色特征融合的行人性别识别方法

    公开(公告)号:CN106960176B

    公开(公告)日:2020-03-10

    申请号:CN201710096262.6

    申请日:2017-02-22

    Applicant: 华侨大学

    Abstract: 本发明一种基于超限学习机和颜色特征融合的行人性别识别方法,包括:提取未标记性别属性的训练图像的超限学习机特征;提取未标记性别属性的输入训练图像HSV颜色特征,将超限学习机特征与颜色特征进行组合,获得融合特征,根据融合特征和训练图像标签利用线性支持向量机SVM训练行人性别分类器;利用训练所得模型提取测试图像特征,同时提取其HSV颜色特征,接着将两类特征进行融合,获得测试图像的融合特征,用训练过程所得线性支持向量机SVM行人性别分类器对融合特征进行分类。本发明对输入图像提取超限学习特征与颜色特征并进行有效融合,实现两种特征的互补,更有效地捕捉行人性别属性,从而提高行人性别识别率。

    基于双核化单类宽度学习自编码器的入侵信号检测方法

    公开(公告)号:CN120067773A

    公开(公告)日:2025-05-30

    申请号:CN202510535293.1

    申请日:2025-04-27

    Applicant: 华侨大学

    Abstract: 本发明公开了基于双核化单类宽度学习自编码器的入侵信号检测方法,涉及信号检测技术领域,方法包括:将接收的信号数据划分为训练集和测试集;使用核函数映射信号数据至特征层,并通过生成的随机矩阵重构数据以获得第一最优核函数矩阵;对特征层数据进行增强处理,得到第二最优核函数矩阵;串联重构的特征层与增强层形成隐藏层,计算其重构误差作为损失函数,求解得出输出层权重矩阵;基于训练集信号数据的重构损失设定判断阈值;结合第一和第二最优核函数矩阵、输出层权重矩阵及判断阈值,识别测试集中的入侵信号。本发明通过两次核函数映射及重构优化处理信号数据,提高了入侵信号检测的准确性。

    基于高效频域Transformer的轻量级图像超分辨率方法及装置

    公开(公告)号:CN119180752B

    公开(公告)日:2025-02-25

    申请号:CN202411678685.5

    申请日:2024-11-22

    Abstract: 本发明公开了一种基于高效频域Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:构建基于高效频域Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型,图像超分辨率模型包括第一卷积层、亚像素卷积层、第二卷积层以及若干个高效频域Transformer模块;获取待重建的低分配率图像和上采样因子并输入经训练的图像超分辨率模型,先经过第一卷积层,得到第一卷积层的输出特征,第一卷积层的输出特征依次经过若干个高效频域Transformer模块,将最后一个高效频域Transformer模块的输出特征与第一卷积层的输出特征相加,得到第二相加结果,第二相加结果依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像。本发明克服现有Transformer方法计算复杂度过高的问题。

Patent Agency Ranking