一种无极灯温度控制方法和装置

    公开(公告)号:CN109683641A

    公开(公告)日:2019-04-26

    申请号:CN201811569990.5

    申请日:2018-12-21

    CPC classification number: G05D23/19 H05B41/38

    Abstract: 本发明公开一种无极灯温度控制方法和装置,包括:将汞无极灯与高频电磁线圈连接,并接通电路使所述汞无极灯正常工作;对所述汞无极灯输入不同的频率和功率,分别测量汞无极灯正常工作时对应汞无极灯的冷端温度;将汞无极灯的冷端温度控制到预设的阈值范围内,并测量在此温度范围内汞无极灯的辐射强度,并在达到最强辐射强度时计算出最优冷端温度。本发明通过对汞灯冷端温度精确测量及控制,使得多余汞贮存于冷端中,汞无极灯温度恒定、灯泡内饱和蒸气压稳定,且汞无极灯温度选在最佳温度,大大提高辐射效率,提高了高频无极汞灯泵浦能力以及汞离子微波频标性能。

    一种CPT原子钟的VCSEL激光器性能检测方法和系统

    公开(公告)号:CN109060304A

    公开(公告)日:2018-12-21

    申请号:CN201810674469.1

    申请日:2018-06-27

    CPC classification number: G01M11/00

    Abstract: 本发明公开了一种CPT原子钟的VCSEL激光器性能检测方法和系统。该检测方法的原理是:利用分光棱镜将激光分成多束,同时测量激光功率、线宽和原子作用光谱特性。利用光功率计测量激光功率,利用外腔半导体激光和频谱仪测量激光线宽,利用原子气室测量激光光谱特性。通过一体化设计,实现对激光器性能的同时检测。激光器是CPT原子钟内的核心元器件,此方法可以同时测量激光器的主要性能指标,极大地提高了激光器检测效率,提高CPT原子钟批生产速率。同时该方法实施所需的光学元器件均可小型化、模块化,实现难度低、可扩展性强、具有商品化优势。

    一种高稳定度光电振荡器及控制方法

    公开(公告)号:CN108879295A

    公开(公告)日:2018-11-23

    申请号:CN201810884116.4

    申请日:2018-08-06

    Abstract: 本申请公开了一种高稳定度光电振荡器,包括激光器、调制单元、偏振单元、第一FP标准具、第二FP标准具、光电转换单元、放大单元、滤波单元、耦合单元组成的振荡回路。调制激光信号分解为第一、第二偏振光信号,分别经第一FP标准具和第二FP标准具生成两路峰值波长不同的光信号,经光电转换单元输出微波振荡信号合并输入至放大单元;再经滤波单元、耦合单元送至调制单元。本发明还包含控制方法,调节第一偏振光、第一FP标准具、第二偏振光、第二FP标准具的角度、位置,使所述微波振荡信号的Q值最大。本发明可解决光电振荡器生成的微波振荡信号稳定度容易受到温度和压力变化影响的不足,实现结构简单、稳定性高的微波源。

    一种微波频标离子数量的检测方法及装置

    公开(公告)号:CN108254619A

    公开(公告)日:2018-07-06

    申请号:CN201711273698.4

    申请日:2017-12-06

    Abstract: 本申请公开了一种微波频标离子数量的检测方法及装置,解决了现有技术检测微波频标离子数量检测精度低、难度大、对离子反应不够灵敏且不利于集成和小型化的问题。该检测方法根据四极线型离子阱内电势分布方程推算离子的慢运动频率,再确定检测信号的中心频率为慢运动频率,扫描范围为±10kHz,将检测信号加载到四极线型离子阱的端电极上,四极线型离子阱的另一个端电极接地。检测信号的输入频率在四极线型离子阱处被吸收,根据透射频谱计算离子数量。在检测时计算机控制晶体振荡器产生检测信号,检测信号经滤波放大后经分压电阻输入四极线型离子阱,输入频率被离子阱内离子吸收后输出透射信号,透射信号经滤波与检测信号锁相放大传输至计算机处理。

    一种CPT原子钟频率驯服控制方法及设备

    公开(公告)号:CN108183709A

    公开(公告)日:2018-06-19

    申请号:CN201711247133.9

    申请日:2017-12-01

    Abstract: 本申请公开了一种CPT原子钟频率驯服控制方法及设备,包括:CPT原子钟中包含驯服控制器,该驯服控制器确定所述CPT原子钟的本振频率,并基于所述本振频率分频得到第一秒脉冲信号;接收通过外部端口输入的第二秒脉冲信号;基于所述第一秒脉冲信号和所述第二秒脉冲信号,确定设定时间间隔内的所述CPT原子钟的本振频率的频率偏移量;根据所述频率偏移量,对所述CPT原子钟的本振频率进行驯服调整,实现短时间内驯服CPT原子钟的频率,以抑制CPT原子钟的频率漂移问题,并且通过CPT原子钟内置的驯服控制器实现,结构简单,易于调试,提升了CPT原子钟频率驯服的自动控制和自主运行。

    一种原子气体腔室以及制备方法

    公开(公告)号:CN108107707A

    公开(公告)日:2018-06-01

    申请号:CN201711174164.6

    申请日:2017-11-22

    CPC classification number: G04F5/14

    Abstract: 本申请公开了一种原子气体腔室以及制备方法,包括:第一玻璃板、中间硅片层和第二玻璃板,且所述第一玻璃板、所述中间硅片层和所述第二玻璃板通过一次键合得到所述原子气体腔,所述中间硅片层中包含通孔,所述第二玻璃板上包含凹槽;所述通孔的位置与所述凹槽的位置相对。通过一次性键合的方式完成原子气体腔室的密封,有效提升了原子气体腔室的密封性;同时,通过在第二玻璃板上刻蚀凹槽,实现反应化合物和反应生成物存在凹槽内,与第二玻璃板的透光部分区分开,保证了原子气体腔室的透光性,同时保证了CPT原子钟的频率的稳定性。

    一种真空手套箱及用于量子腔阳极键合方法

    公开(公告)号:CN107914295A

    公开(公告)日:2018-04-17

    申请号:CN201711434306.8

    申请日:2017-12-26

    Abstract: 本发明提供一种真空手套箱及量子腔阳极键合的方法,包括真空泵,还包括:第一箱体;与所述第一箱体对应的第二箱体;连通所述第一箱体和第二箱体的第一过渡仓;以及固定于所述第二箱体上并与第二箱体连通的第二过渡仓;所述第一过渡仓和第二过渡仓的两端分别设置阀门,所述真空泵连通阀门隔开的每个容腔上,所述阀门依次开启使制作的产品在真空中运输和制作。本发明提供一种真空手套箱及用于量子腔阳极键合的方法,具有如下效果:实现了两个箱体的环境隔离、第二箱体与外界空气的有效隔离;避免了硅片、玻璃片以及反应物质受到粉尘和水氧的污染,保证了量子腔的阳极键合强度和反应物质的纯度。

    一种CPT原子钟控制系统
    38.
    发明公开

    公开(公告)号:CN107404318A

    公开(公告)日:2017-11-28

    申请号:CN201710655915.X

    申请日:2017-08-03

    CPC classification number: G04F5/145 H03L7/26

    Abstract: 本发明公开一种CPT原子钟控制系统,包括激光器、物理系统、微波频率控制模块、激光频率控制模块、温度控制模块、信号检测模块、磁场控制模块和控制芯片,其中所述激光器出射的激光入射到所述物理系统中,所述物理系统将入射的激光转换为激光共振光谱信号,并将该激光共振光谱信号进行光电转换后传递到所述信号检测模块;所述信号检测模块将所述光电转换后的信号进行放大和滤波,得到激光直流信号和CPT信号并发送给控制芯片;所述控制芯片根据接收到的用于反馈控制的所述激光直流信号和CPT信号,调整加载在所述微波频率控制模块和所述激光频率控制模块上的电压,用于满足原子钟系统的稳定运行。

    一种光斑位置探测器
    39.
    发明公开

    公开(公告)号:CN106595478A

    公开(公告)日:2017-04-26

    申请号:CN201611129441.7

    申请日:2016-12-09

    Abstract: 本发明公开一种光斑位置探测器,所述探测器包括:多个光电性能一致的光电传感器,处于同一平面且相互之间存在缝隙;和光散射膜,平行于所述多个光电传感器构成的平面且与所述平面隔开;所述光散射膜的面积大于所述平面,本发明提供了一种工艺简单、性能可靠的光斑位置探测器,实现光斑位置的定位功能,同时还可根据需要进行动态调整和设置,可扩展为多象限的光斑位置探测器,实现更广范围的光斑探测,提高了光斑位置探测器的实用性。

    基于光学相干背散射效应的原子气体浓度检测装置及方法

    公开(公告)号:CN103528994B

    公开(公告)日:2016-01-20

    申请号:CN201310476184.4

    申请日:2013-10-12

    Abstract: 本发明公开了一种基于光学相干背散射效应的原子气体浓度检测装置及方法,该原子气体浓度检测装置包括准直激光器(1)、格兰泰勒棱镜(2)、反射镜(3)、消偏振分光棱镜(4)、样品台(5)、傅里叶透镜(6)、检偏器(7)、探测器(8)和计算机(9);准直激光器(1)、格兰泰勒棱镜(2)和反射镜(3)沿横向方向依次设置于同一条直线上;反射镜(3)和消偏振分光棱镜(4)沿纵向方向设置于同一条直线上;样品台(5)设置于消偏振分光棱镜(4)的一侧,在消偏振分光棱镜(4)的另一侧依次设置傅里叶透镜(6)、检偏器(7)和探测器(8);探测器(8)通过数据线与计算机(9)电连接;探测器(8)设置于傅里叶透镜(6)的焦面上。所述原子气体浓度检测装置及方法能够实现原子气体封闭汽室内的原子浓度的无损检测。

Patent Agency Ranking