基于拓扑知觉组织理论的形状图像分类方法

    公开(公告)号:CN102511049B

    公开(公告)日:2013-07-17

    申请号:CN201080003725.6

    申请日:2010-05-13

    Abstract: 一种基于拓扑直觉组织理论的形状图像分类方法,包括步骤:提取形状图像的边缘点S1;构建拓扑空间,计算提取的边缘点在拓扑空间中的表达S2;根据边缘点在拓扑空间中的表达来提取全局特征S3;根据边缘点在欧氏空间中的表达来提取局部特征S4;融合全局特征和局部特征,根据全局特征的匹配程度来调节局部特征在融合过程中的权重S5;根据融合后的特征分类形状图像S6。本发明适用于智能视觉监控系统,帮助监控系统分类场景中的目标,使得监控系统能真正理解场景中正在发生什么,而且可以根据不同的目标类别采取不同的安全级别。适用于自动驾驶系统,判断交通标志的类别,从而让自动驾驶系统更佳智能化。

    基于自适应空间信息有向图的图像分类方法

    公开(公告)号:CN102930295A

    公开(公告)日:2013-02-13

    申请号:CN201210409976.5

    申请日:2012-10-24

    Abstract: 一种基于自适应空间信息有向图的图像分类方法,包括步骤:从所有图像中提取局部特征;根据每个局部特征对应的视觉单词,从测试图像中随机抽取局部特征分组;利用聚类算法对各组局部特征的空间坐标聚类,以聚类中心为定点并连接各相邻顶点得到空间信息的有向图;根据局部特征的空间位置,对所有图像进行类聚操作,将聚集结果串联得到图像的最终表达。本发明能够自适应地考虑不同视觉单词在空间分布上的差异性,从而能够更好地对全局空间信息进行建模,因而,能够有效地提升图像分类精度。

    基于拓扑知觉组织理论的形状图像分类方法

    公开(公告)号:CN102511049A

    公开(公告)日:2012-06-20

    申请号:CN201080003725.6

    申请日:2010-05-13

    Abstract: 一种基于拓扑直觉组织理论的形状图像分类方法,包括步骤:提取形状图像的边缘点S1;构建拓扑空间,计算提取的边缘点在拓扑空间中的表达S2;根据边缘点在拓扑空间中的表达来提取全局特征S3;根据边缘点在欧氏空间中的表达来提取局部特征S4;融合全局特征和局部特征,根据全局特征的匹配程度来调节局部特征在融合过程中的权重S5;根据融合后的特征分类形状图像S6。本发明适用于智能视觉监控系统,帮助监控系统分类场景中的目标,使得监控系统能真正理解场景中正在发生什么,而且可以根据不同的目标类别采取不同的安全级别。适用于自动驾驶系统,判断交通标志的类别,从而让自动驾驶系统更佳智能化。

    基于侧向抑制的视觉注意检测方法及装置

    公开(公告)号:CN108304797B

    公开(公告)日:2020-07-28

    申请号:CN201810085316.3

    申请日:2018-01-29

    Abstract: 本发明涉及计算机视觉技术领域,具体提供了一种基于侧向抑制的视觉注意检测方法及装置,旨在解决如何提高计算机视觉注意机制的有效性和实用性。为此目的,本发明中的视觉注意检测方法包括下述步骤:获取目标图像的图像类别;获取每个激活函数神经元接收到的反馈信息;根据反馈信息判断是否关闭对应的激活函神经元;根据判断结果关闭相应的激活函数神经元后,对激活函数神经元的响应值进行归一化处理,得到选择性注意结果图;对选择性注意结果图进行归一化处理,得到显著性目标检测结果图。本发明的技术方案基于卷积神经网络,并能够利用卷积神经网络的前馈与反馈信息实现对目标物体的信息检测。同时,本发明中的装置能够执行并实现上述步骤。

    一种基于卷积神经网络的人脸亲属关系识别方法及装置

    公开(公告)号:CN105005774B

    公开(公告)日:2019-02-19

    申请号:CN201510451033.2

    申请日:2015-07-28

    Abstract: 本发明公开一种基于卷积神经网络的人脸亲属关系识别方法及装置,主要用于根据人脸图像进行亲属关系识别等领域。所述方法包括人脸识别、人脸关键点位置切分、人脸区域位置切分、卷积神经网络建立及训练、亲属关系识等。所述方法提出的卷积神经网络具有强大的提取亲属关系特征的功能,对于输入图片具有较强的鲁棒能力。该方法提出的基于人脸关键点以及人脸不同区域特征的卷积神经网络方法,实现了更好的亲属识别功能。该方法可以获得优于传统基于人脸的亲属关系识别效果。

    一种抵抗形变的图像匹配方法

    公开(公告)号:CN104156952B

    公开(公告)日:2017-11-14

    申请号:CN201410373199.2

    申请日:2014-07-31

    Inventor: 王亮 黄永祯 曹迪

    Abstract: 本发明公开了一种抵抗形变的图像匹配方法,该方法包括以下步骤:步骤1:对两幅输入图像分别进行二值化处理,从中确定参考图像与待匹配图像,对于参考图像与待匹配图像,利用不同的采样间距进行采样,得到相应的多个采样点;步骤2:从待匹配图像的采样点中依次确定每个参考图像采样点的K1个候选对应点;步骤3:从参考图像中每个采样点的K1个候选对应点中确定K2个更为精细的候选对应点,其中,K2

    基于深度信息的图像分类方法

    公开(公告)号:CN103246895B

    公开(公告)日:2016-03-09

    申请号:CN201310178645.X

    申请日:2013-05-15

    Abstract: 本公开提供了一种基于深度信息的图像分类方法,包括:使用已知深度信息的第一训练图像集训练马尔可夫随机场MRF;使用所述MRF从未知深度信息的第二训练图像集提取深度信息;从所述第二训练图像集提取局部特征;基于所提取的深度信息和所提取的局部特征来训练支持向量机分类器;以及使用经训练的支持向量机分类器来对待分类图像集中的图像进行分类,其中所述第二训练图像集和所述待分类图像集属于同一场景集。现有的图像分类方法只考虑图像空间,也即二维空间的信息,本公开考虑了深度信息,将原来在二维空间中难以区分的特征在深度维度上予以分开,从而提高了图像分类的准确性。

Patent Agency Ranking