基于人体姿态的多视角人体图像合成方法及装置

    公开(公告)号:CN109191366B

    公开(公告)日:2020-12-01

    申请号:CN201810764054.3

    申请日:2018-07-12

    Abstract: 本发明属于图像合成技术领域,具体提供一种基于人体姿态的多视角人体图像合成方法及装置。旨在解决现有技术无法有效地进行人的多视角图像合成以及保持人的特征不发生明显变化的问题。本发明提供了一种基于人体姿态的多视角人体图像合成方法,包括基于姿态转换模型并根据原始人体姿态和目标视角,对原始人体姿态进行姿态转换;基于前景转换模型并根据原始前景图像、原始人体姿态和目标视角人体姿态,对原始前景图像进行前景转换;基于多视角合成模型并根据原始图像和目标前景图像,对原始图像进行多视角合成,得到多视角人体合成图像。本发明提供的方法具有保持合成图像中人的特征,以及合成高质量的合成图像的有益效果。

    基于递归神经网络和人体骨架运动序列的行为识别方法

    公开(公告)号:CN104615983B

    公开(公告)日:2018-07-31

    申请号:CN201510043587.9

    申请日:2015-01-28

    Inventor: 王亮 王威 杜勇

    Abstract: 本发明公开种基于递归神经网络的人体骨架运动序列行为识别方法,包括以下步骤:对已经提取好的人体骨架姿态序列中节点坐标进行归化,以消除人体所处绝对空间位置对识别过程的影响,利用简单平滑滤波器对骨架节点坐标滤波以提高信噪比,最后将平滑后的数据送入个层次化双向递归神经网络进行深度特征提取及识别,同时提供了种层次化单向递归神经网络模型以应对实际中的实时在线分析需求。该方法主要优点是根据人体结构特征及运动的相对性,设计端到端的分析模式,在实现高精度识别率的同时避免复杂的计算,便于实际应用。该发明对于基于深度摄像机技术的智能视频监控、智能交通管理及智慧城市等领域具有重要意义。

    基于深度学习的文字识别模型训练方法和识别方法

    公开(公告)号:CN105205448A

    公开(公告)日:2015-12-30

    申请号:CN201510522576.9

    申请日:2015-08-24

    CPC classification number: G06K9/00536 G06K9/6267 G06K2209/01

    Abstract: 一种基于深度学习的文字识别方法,包括:设计更深的多层卷积神经网络结构,把每一个字符作为一个类别;采用反向传播算法训练卷积神经网络用以识别单一字符,有监督地最小化该网络的目标函数,得到字符识别模型;最后根据现有识别出的字符,采用维特比算法从词典中找出最有可能的词语。在测试的时候,给定一个输入,需要先进行滑动窗口扫描获得备选字符,再从备选字符中找出最可能的词语。本方法利用更深的卷积神经网络来学习文字特征,对于文字的颜色、大小、光照、模糊具有鲁棒性,字符识别和词语识别能够保持较高的准确率。

    基于信息导向注意力网络的图像识别方法、系统及装置

    公开(公告)号:CN111881957B

    公开(公告)日:2022-09-23

    申请号:CN202010683490.5

    申请日:2020-07-15

    Abstract: 本发明属于领域,具体涉及了一种基于信息导向注意力网络的图像识别方法,旨在解决的问题。本发明包括:获取输入图像,通过信息导向的注意力网络计算输入图像的特征向量,计算特征向量和信息导向的注意力网络中的原型表征之间的距离,选取特征向量距离最近的类别得到图像的分类结果。本发明解决了现有的图像识别技术中训练神经网络严重依赖数据规模的缺陷,通过将标注数据和未标注数据组织在一起并对他们之间的关系进行建模,可以抽取更具代表性的特征,解决了现有图像识别技术所用人工神经网络需要大量有标注的训练数据才能满足使用性能需求的缺陷。

    基于无监督图表示学习的节点识别方法、系统、装置

    公开(公告)号:CN112784918A

    公开(公告)日:2021-05-11

    申请号:CN202110137847.4

    申请日:2021-02-01

    Inventor: 王威

    Abstract: 本发明属于大数据分析、模式识别和神经网络技术领域,具体涉及一种基于无监督图表示学习的节点识别方法、系统、装置,旨在解决现有基于图神经网络的节点识别方法需要大量的标签样本,在标注样本较少时,造成图神经网络训练困难以及识别精度较低的问题。本系统方法包括获取待识别的数据,作为输入数据;构建输入数据的图结构,得到图结构数据,并通过训练好的多层图神经网络获取所述图结构数据中各节点的特征表示;基于特征表示,通过预训练的分类器得到图结构数据中各节点所属的类别。本发明减少了样本标注的需求,简化了网络训练的难度,并能在少量标记样本的监督下实现具有较高精度的节点识别。

    基于信息导向注意力网络的图像识别方法、系统及装置

    公开(公告)号:CN111881957A

    公开(公告)日:2020-11-03

    申请号:CN202010683490.5

    申请日:2020-07-15

    Abstract: 本发明属于领域,具体涉及了一种基于信息导向注意力网络的图像识别方法,旨在解决的问题。本发明包括:获取输入图像,通过信息导向的注意力网络计算输入图像的特征向量,计算特征向量和信息导向的注意力网络中的原型表征之间的距离,选取特征向量距离最近的类别得到图像的分类结果。本发明解决了现有的图像识别技术中训练神经网络严重依赖数据规模的缺陷,通过将标注数据和未标注数据组织在一起并对他们之间的关系进行建模,可以抽取更具代表性的特征,解决了现有图像识别技术所用人工神经网络需要大量有标注的训练数据才能满足使用性能需求的缺陷。

    基于渐进式簇净化网络的转导推理小样本分类方法

    公开(公告)号:CN111881954A

    公开(公告)日:2020-11-03

    申请号:CN202010679785.5

    申请日:2020-07-15

    Abstract: 本发明属于计算机视觉、模式识别和神经网络技术领域,具体涉及一种基于渐进式簇净化网络的转导推理小样本分类方法、系统、装置,旨在解决现有基于小样本学习的分类方法忽略了测试样本的作用,导致分类精度、鲁棒性较差的问题。本系统方法包括:获取第一数据集、第二数据集;提取第一数据集、第二数据集中图像的特征,对第二数据集不同类别的图像特征求均值,作为各类别的特征初始值;通过分类模型对第一数据集中的图像分类;第一数据集中重分类的各图像的正得分;第一数据集中重分类的各图像的负得分;通过预设的第一方法对特征初始值进行更新;循环判断。本发明提高了分类的精度、鲁棒性。

    一种基于多任务深度神经网络的数据识别方法及装置

    公开(公告)号:CN103345656B

    公开(公告)日:2016-01-20

    申请号:CN201310316221.5

    申请日:2013-07-17

    Abstract: 本发明公开了一种基于多任务深度神经网络的数据识别方法及其装置。该方法包括:步骤1、建立多任务深度神经网络;步骤2、将所述多任务深度神经网络相邻两层看作限制的波尔兹曼机,采用无监督地自底向上的逐层训练方法来预训练该多任务深度神经网络,获得相邻层之间的初始连接权重;步骤3、利用反向传播算法有监督地最小化关于所述网络权重的目标函数,以获得优化后的网络权重;步骤4、将待识别数据输入具有优化后网络权重的所述多任务深度神经网络,得到输出层节点值,并根据输出层节点值得出所述待识别数据所属的类别。本方法利用神经网络来挖掘不同标签之间的关联性,在标签数量较多的大规模图像标注中仍然可以保证较高的图像标注准确率。

    人脸验证方法和系统
    39.
    发明公开

    公开(公告)号:CN104363981A

    公开(公告)日:2015-02-18

    申请号:CN201480000558.8

    申请日:2014-07-14

    CPC classification number: G06K9/80

    Abstract: 本发明涉及一种人脸验证方法和系统,方法包括:利用主成分分析和线性判别分析对高维人脸特征数据分别进行预处理,其中包括设置主成分分析降维后的数据维度;建立判别式高阶玻尔兹曼机,设置隐含层的节点数;利用张量对角化的策略来减少该判别式高阶玻尔兹曼机的模型参数;把成对的人脸数据输入到判别式高阶玻尔兹曼机中,利用随机梯度下降算法来最大化关系类别的条件概率,从而迭代地优化该玻尔兹曼机的权重,从而得到最终的判别式高阶玻尔兹曼机;向判别式高阶玻尔兹曼机模型输入待验证的成对人脸数据,得到对应的验证结果数据。本发明通过在无监督玻尔兹曼机模型中引入数据关系类别信息,使模型判别力增强,更适于具有精度要求的人脸验证。

    一种基于多任务深度神经网络的数据识别方法及装置

    公开(公告)号:CN103345656A

    公开(公告)日:2013-10-09

    申请号:CN201310316221.5

    申请日:2013-07-17

    Abstract: 本发明公开了一种基于多任务深度神经网络的数据识别方法及其装置。该方法包括:步骤1、建立多任务深度神经网络;步骤2、将所述多任务深度神经网络相邻两层看作限制的波尔兹曼机,采用无监督地自底向上的逐层训练方法来预训练该多任务深度神经网络,获得相邻层之间的初始连接权重;步骤3、利用反向传播算法有监督地最小化关于所述网络权重的目标函数,以获得优化后的网络权重;步骤4、将待识别数据输入具有优化后网络权重的所述多任务深度神经网络,得到输出层节点值,并根据输出层节点值得出所述待识别数据所属的类别。本方法利用神经网络来挖掘不同标签之间的关联性,在标签数量较多的大规模图像标注中仍然可以保证较高的图像标注准确率。

Patent Agency Ranking