-
公开(公告)号:CN107016053A
公开(公告)日:2017-08-04
申请号:CN201710121255.7
申请日:2017-03-02
Applicant: 中国科学院信息工程研究所
Abstract: 本发明提供一种并行的数据差分方法,步骤包括:(1)文件预处理:将源文件和目标文件初始化,生成源文件的后缀数组,创建补丁文件并初始化;(2)目标文件切分:根据线程数目切分目标文件,为切分后的每一部分目标文件增加一个线程进行独立处理;(3)线程处理过程:在每一线程中,初始化切分后的目标文件,创建patch文件,通过上述后缀数组比较源文件与目标文件生成差分数据,将该差分数据写入该patch文件;(4)主进程合并处理:将上述各线程的已写入差分数据的patch文件一起写入上述补丁文件。本方法采用多线程并行技术,来提高生成补丁的速度。
-
公开(公告)号:CN106326475A
公开(公告)日:2017-01-11
申请号:CN201610793354.5
申请日:2016-08-31
Applicant: 中国科学院信息工程研究所
IPC: G06F17/30
Abstract: 本发明涉及一种高效的静态哈希表实现方法及系统。该方法包括以下步骤:1)设定哈希桶大小hash_bit,生成多个数据对,将key[i]和value[i]对应于关键字和值;2)根据key[i]值,利用rank操作构建哈希表,并计算C表和D表;3)根据C表和D表计算rank(h),并根据rank(h)的值存储相应的key[i]和value[i];4)根据所要查询的值key判断哈希表中是否存在该元素,若存在则在对应存储位置查询并返回value值,否则访问失败;5)根据步骤4)所得的结果返回结果信息。本发明利用Rank-select算法实现新型静态哈希表的构建与访问,可用于内容过滤、信息安全等领域。
-
公开(公告)号:CN118631477A
公开(公告)日:2024-09-10
申请号:CN202310221375.X
申请日:2023-03-09
Applicant: 中国科学院信息工程研究所
IPC: H04L9/40 , H04L61/4511 , G06F18/241 , G06F18/214 , G06N3/04 , G06N3/0985 , G06F16/901
Abstract: 本发明涉及一种基于元学习的小样本恶意域名检测方法及装置。所述方法包括:将DNS场景建模为异质图;所述异质图的节点包括:客户端、域名和IP地址,所述异质图的边包括:客户端查询域名、域名解析为IP地址和域名的规范名称;基于异质图神经网络HGT来学习域名的节点表示,以得到更新后的域名特征向量;使用基于元学习的小样本分类器对所述更新后的域名特征向量进行分类,以得到恶意域名检测结果。本发明可以获取更好的恶意域名检测效果。
-
公开(公告)号:CN111753150B
公开(公告)日:2023-10-13
申请号:CN202010412344.9
申请日:2020-05-15
Applicant: 中国科学院信息工程研究所
IPC: G06F16/9032
Abstract: 本发明公开一种基于图搜索方法加速epsilon闭包计算的方法及系统,涉及计算机领域,针对传统闭包计算整体消耗时间长的缺陷,为了优化闭包算法,利用图搜索的方法,在NFA构造DFA的过程中对现有的方法进行优化,加速了DFA的构造过程。
-
公开(公告)号:CN116668076A
公开(公告)日:2023-08-29
申请号:CN202310469493.2
申请日:2023-04-27
Applicant: 中国科学院信息工程研究所
IPC: H04L9/40 , H04L61/4511
Abstract: 本发明公开了一种基于异质图鲁棒对抗学习的恶意域名检测方法和装置。所述方法包括:将DNS场景建模为一个原始异质图;其中,所述原始异质图中的节点包括:域名、客户端和IP地址;对原始异质图进行攻击注入,以得到若干个受攻击图;基于DoDe‑CL模型和多层感知机,计算原始异质图和受攻击图中的域名嵌入表示后,对同一域名进行域名嵌入表示组合,并根据组合后的域名嵌入表示,得到所述DNS场景中的恶意域名检测结果。本发明可以提升模型面对基于异质图的攻击时的鲁棒性。
-
公开(公告)号:CN116628303A
公开(公告)日:2023-08-22
申请号:CN202310462355.1
申请日:2023-04-26
Applicant: 中国科学院信息工程研究所
IPC: G06F16/951 , G06F16/958 , G06F16/35 , G06F18/2415 , G06F40/186 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于提示学习的半结构化网页属性值抽取方法和系统,涉及互联网领域,首先根据DOM树简化算法检索变量节点的DOM树视角提示,然后设计包含任务描述的任务模板获得模板视角提示信息,最后引入基于encoder‑decoder结构的预训练语言模型,并以“提示”为核心操作,全面分析领域数据特点和目标任务特点,设计两种视角的提示信息,通过模板填充融合双视角提示信息,通过提示学习的方式在语义层面和任务层面联合引导预训练语言模型进行任务学习,实现预训练语言模型和属性值抽取任务的有效结合,实现了领域标注数据稀缺场景下优越的模型性能。
-
公开(公告)号:CN114050912A
公开(公告)日:2022-02-15
申请号:CN202111158750.8
申请日:2021-09-30
Applicant: 中国科学院信息工程研究所
IPC: H04L9/40 , H04L61/4511 , G06K9/62 , G06N3/08
Abstract: 本发明涉及一种基于深度强化学习的恶意域名检测方法和装置。该方法的步骤包括:获取待检测域名的真实DNS流量;查询并记录真实DNS流量中待检测域名的whois信息;根据待检测域名本身以及whois信息,对待检测域名进行特征提取,生成待检测域名的特征向量;将待检测域名的特征向量输入至深度强化学习模型中,判断待检测域名是否具有恶意行为。本发明使用基于深度强化学习的方法来解决真实DNS流量中良性与恶意样本数据不平衡的分类问题,能够快速有效地发现真实DNS流量中存在的低比例恶意样本,在低平衡率时依旧保持较好的效果。
-
公开(公告)号:CN113627164A
公开(公告)日:2021-11-09
申请号:CN202110784458.0
申请日:2021-07-12
Applicant: 中国科学院信息工程研究所
IPC: G06F40/279 , G06F40/216 , G06K9/62
Abstract: 本发明公开了一种状态爆炸型正则表达式的识别方法及系统。本方法为:1)对于一待识别的正则表达式,生成其对应的NFA图,得到该正则表达式对应的NFA图集合;2)对于NFA图集合中的每一NFA图,提取该NFA图中的所有根子图并将其输入graph2vec模型,训练得到该NFA图的嵌入表示;3)利用分类模型处理该NFA图的嵌入化表示,判定该正则表达式是否为状态爆炸型正则表达式。该方法可高效快速的批量处理正则表达式,满足在线系统的高效处理性能与较低空间消耗的需求。
-
公开(公告)号:CN108399152B
公开(公告)日:2021-05-07
申请号:CN201810119184.1
申请日:2018-02-06
Applicant: 中国科学院信息工程研究所
Abstract: 本发明涉及一种数字查找树的压缩表示方法、系统、存储介质及规则匹配装置。该方法包括:采用完全矩阵表示法建立数字查找树的结点,并建立状态转换表;建立基值表,并利用数组记录叶子结点状态中对应的规则编号;利用基值表对状态行进行归一化,生成归一化矩阵;利用数组来记录归一化矩阵的状态,对归一化矩阵的状态进行去重,得到约简的状态转移矩阵;利用位图对约简的状态转移矩阵进行修正,使其中的元素能够用一个字节来表示;利用基值表、记录归一化矩阵状态的数组、位图和修正后的矩阵进行状态的匹配,并输出匹配结果。本发明以完全矩阵表示法为原型,能够保证结点间状态转移的时间复杂度为O(1),同时可大幅度减少数据结构的存储空间。
-
公开(公告)号:CN107515897B
公开(公告)日:2021-02-02
申请号:CN201710589808.1
申请日:2017-07-19
Applicant: 中国科学院信息工程研究所
IPC: G06F16/903
Abstract: 本发明涉及一种串匹配场景下数据集生成方法、设备和可读存储介质。该方法包括以下步骤:1)独立地生成模式串的每个字符,形成预设规模和预设长度的随机模式串集合;2)根据已生成的随机模式串集合,构造指定命中水平的文本数据集;3)输出生成的随机模式串集合和文本数据集。该设备包括通过总线连接的接收器、处理器、存储器和发送器,所述存储器用于存储串匹配场景下数据集生成指令。本发明能够生成预设规模预设长度的随机模式串集合,根据已生成的随机模式串集合可以构造指定命中水平的文本数据集,该随机模式串集合和文本数据集能够用于串匹配算法的功能测试和性能测试,对串匹配算法的进一步研究和性能提升有重要的作用。
-
-
-
-
-
-
-
-
-