-
公开(公告)号:CN114910200B
公开(公告)日:2023-08-25
申请号:CN202210521270.1
申请日:2022-05-13
Applicant: 三峡大学
IPC: G01L1/24
Abstract: 本发明涉及光纤光栅传感技术领域,具体涉及一种平膜片光纤光栅压力传感器的增敏设计方法,包括以下步骤:根据工程需要,确定材料的选型和压力传感器的直径,计算膜片的厚度及中心点最大挠度;根据光纤光栅传感器的波长精度和灵敏度计算中心点所需的最小挠度;采用ANSYS软件设计膜片的力学模型,遴选满足最小挠度要求的膜片模型并分级加载,然后选择满足最小挠度要求的膜片模型;对弹性体进行镂空处理,再确定压力传感器的机械结构并生产、组装。本发明通过理论优化设计,增加凸台高度,规避传统的直通方式,增加传感器对挠度变形的敏感度;在膜片顶部增加开槽设计,降低膜片的变形刚度,增加压力敏感度,在小体积的情况下实现大范围压力感测。
-
公开(公告)号:CN115449268A
公开(公告)日:2022-12-09
申请号:CN202211110238.0
申请日:2022-09-13
Applicant: 三峡大学
IPC: C09D127/16 , C09D183/04 , C09D5/24 , C09D7/61 , B05D1/02 , B05D1/28 , B05D1/38 , B05D3/02 , B05D7/00 , B05D7/14 , B05D7/24
Abstract: 本发明公开了一种柔性可粘贴电热/光热超疏水涂层的制备方法,以N‑N二甲基甲酰胺为溶剂,加入聚偏氟乙烯;在室温下以乙酸乙酯为溶剂,加入聚二甲基硅氧烷搅拌溶解,多壁碳纳米管、石墨粉、氮化钛纳米颗粒,之后在混合浆料中加入PDMS固化剂;室温下,部分PVDF均质溶液与得到的浆料混合搅拌;部分PVDF均质溶液喷涂或刮涂在基片表面,烘干;均质混合浆料刮涂在所得到的烘干处理后的基片表面,烘烤干燥,冷却,剥离,得到柔性可粘贴电热/光热超疏水涂层。本发明所制备的这种可粘贴电热/光热超疏水涂层不仅具有优异的柔韧性、延展性、自清洁、电热和光热特性,能通过粘胶任意粘在固体物体表面,在防冰除冰领域有着较好的应用前景。
-
公开(公告)号:CN115433501A
公开(公告)日:2022-12-06
申请号:CN202211110342.X
申请日:2022-09-13
Applicant: 三峡大学
IPC: C09D163/00 , C09D7/61
Abstract: 本发明公开一种带有摩擦防护颗粒超疏水涂层的制备方法,其关键技术是通过在涂层内植入大粒径二氧化硅颗粒作为超疏水涂层抗摩擦保护颗粒,由此显著提高超疏水涂层耐摩擦特性。将环氧树脂溶解在丙酮中,形成环氧树脂溶液;将十八胺、不同小粒径二氧化硅颗粒、大粒径二氧化硅颗粒、十六烷基三甲氧基硅烷、环氧树脂固化剂按一定质量比加入到所制备的环氧树脂溶液中,之后在水浴中加热搅拌,由此得到超疏水涂层镀膜胶质溶液;将基片浸入到超疏水涂层镀膜胶质溶液中,采用提拉法制备薄膜;将提拉镀膜后的基片在空气中静置一段时间后放入烘箱中进行烘烤干燥,烘烤结束后便可获得一种带有摩擦防护颗粒的超疏水涂层。
-
公开(公告)号:CN113698645B
公开(公告)日:2022-11-18
申请号:CN202110962991.1
申请日:2021-08-20
Applicant: 三峡大学
Abstract: 本文提供一种基于PMMA混合多孔辐射制冷薄膜的制备方法。该辐射制冷薄膜主要以PMMA为基底采用非溶剂诱导相分离方法制备的混合多孔辐射制冷薄膜。其主要制备方法为:将固态的PMMA与溶剂四氢呋喃和非溶剂去离子水混合,磁力搅拌后使其分散均匀,得到透明溶液。用洗衣水清洗亚克力片,在清水中超声后用无水乙醇清洗,再用去离子水清洗后烘干待用。采用BEVS 1806B/150可调节刮刀,将透明的溶液滴到清洗过的亚克力表面,然后用可调节刮刀匀速刮过样品表面,形成平整涂层,放置于常温半个小时后蒸发除去四氢呋喃和水分。因为发明材料价格低廉且制备方法简单,该薄膜在户外高压电气设备,建筑外墙和顶棚、户外用品、农业大棚领域中有广阔应用前景。
-
公开(公告)号:CN113969074B
公开(公告)日:2022-08-05
申请号:CN202111188727.3
申请日:2021-10-12
Applicant: 三峡大学
Abstract: 本文提供DCPDA/DPHA光固化单体的透明辐射制冷薄膜制备方法。该辐射制冷薄膜主要以DCPDA和DPHA两种光固化单体聚合构成。其制备方法为:取DCPDA和DPHA单体混合,充分搅拌均匀得到液态无色透明溶液;将光固化剂Irgacure 184粉末加入无色溶液中,通过磁力搅拌使充分溶解。将配制好的透明溶液滴到清洗过的铝片上,分别采用BEVS 1806B/150可调节刮刀、海绵块、硅胶模板,喷壶匀速在样品表面涂膜,形成平整涂层。将成膜样品置于紫外灯箱下照射,使液态膜完全固化。因为所发明膜透光性好、材料价格低廉、制备方法简单且有良好的辐射制冷效果,所以该薄膜在有采光需求的建筑物外墙、太阳能电池板、户外高压电气设备等领域中有广阔应用前景。
-
公开(公告)号:CN113373427B
公开(公告)日:2022-05-20
申请号:CN202110500953.4
申请日:2021-05-08
Applicant: 三峡大学
IPC: C23C16/32 , C23C16/505 , C23C16/04
Abstract: 本发明公开了一种基于PECVD技术制备无机透明超疏水碳化硅薄膜的方法。针对超疏水薄膜须具有表面多级粗糙结构和低表面能特性,以甲烷和硅烷为工作气体,采用等离子体增强化学气相沉积技术通过掩膜板多次交叉沉积方式在玻璃板表面构筑具有多级微纳粗糙结构的碳化硅薄膜。基于该粗糙结构,优化PECVD工艺参数使所制备碳化硅薄膜含有大量低表面能‑CHn基团,避开常用有机硅氧烷和有毒氟化物对材料进行低表面能修饰工艺,在不采用任何有机表面修饰剂的条件下便可获得兼具透明性和超疏水特性的碳化硅薄膜。制备的碳化硅透明超疏水薄膜成本低廉,在光伏玻璃板、显示屏幕、挡风玻璃以及建筑幕墙玻璃自清洁和防污等方面具有广阔的应用前景。
-
公开(公告)号:CN113897609A
公开(公告)日:2022-01-07
申请号:CN202111124727.7
申请日:2021-09-25
Applicant: 三峡大学
Abstract: 本发明公开了一种超疏水导热多层膜及其制备方法,包括如下步骤:采用等离子体增强化学气相沉积技术以高纯甲烷和四氟化碳为碳源气体在单晶硅基片表面制备碳膜;采用磁控溅射技术以高纯铜为靶材在步骤中所生长的碳膜表面溅射沉积铜纳米膜;采用PECVD技术以高纯甲烷和四氟化碳为碳源气体在所生长的铜纳米膜表面再次沉积碳膜;重复制备碳膜及铜纳米膜表面再次沉积碳膜的步骤2~4次;对所制备的多层膜在氢气氛围保护下高温烧结;采用PECVD技术以高纯四氟化碳为工作气体对所烧结处理后的多层膜实施等离子体处理。通过上述步骤所获得的多层膜具有优异的超疏水和导热功能,在电子元器件散热和防水方面具有很好的应用前景。
-
公开(公告)号:CN104361964A
公开(公告)日:2015-02-18
申请号:CN201410627746.5
申请日:2014-11-10
Applicant: 三峡大学
IPC: H01C10/14
Abstract: 一种基于磁流变效应的可调变阻装置,包括第一磁铁、第二磁铁、封闭型外套、底座,磁流变材料安装在封闭型外套内,两个电极分别布置在所述封闭型外套的上、下两面,两个导线分别连接两个电极,旋转轴固定在所述封闭型外套的前、后两个面上,并插入到两侧对应的两个固定支架的圆孔中,第一磁铁、第二磁铁、固定支架置于底座上。本发明一种基于磁流变效应的可调变阻装置,可以通过改变外磁场强度、磁流变材料种类以及其浓度,可跟据实际需求给出符合不同区间的电阻范围。
-
公开(公告)号:CN204143986U
公开(公告)日:2015-02-04
申请号:CN201420666304.7
申请日:2014-11-10
Applicant: 三峡大学
IPC: H01C10/14
Abstract: 一种基于磁流变效应的转动式变阻装置,包括第一磁铁、第二磁铁、封闭型外套、底座,磁流变材料安装在封闭型外套内,两个电极分别布置在所述封闭型外套的上、下两面,两个导线分别连接两个电极,旋转轴固定在所述封闭型外套的前、后两个面上,并插入到两侧对应的两个固定支架的圆孔中,第一磁铁、第二磁铁、固定支架置于底座上。本实用新型一种基于磁流变效应的可调变阻装置,可以通过改变外磁场强度、磁流变材料种类以及其浓度,可跟据实际需求给出符合不同区间的电阻范围。
-
-
-
-
-
-
-
-