-
公开(公告)号:CN119194180A
公开(公告)日:2024-12-27
申请号:CN202411197824.2
申请日:2024-08-29
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
Abstract: 本发明涉及一种免热处理高强韧Al‑Si系铸造铝合金及其制备方法与应用,属于铝合金领域。本发明的免热处理高强韧Al‑Si系铸造铝合金按照质量百分比计的组成元素包括Si 6%~9%,Mg 0.1%~0.5%,Cu 0.001%~1.2%,Fe 0.15%~0.5%,Mn 0.001%~0.5%,Mo 0.001%~0.5%,Sr 0.015%‑0.025%,Ca 0.001%‑0.05%,其余为Al与不可避免的杂质,杂质的质量分数之和≤0.2%,单个杂质元素的质量分数≤0.05%。本发明制得的Al‑Si系免热处理铸造铝合金铸态下屈服强度为110MPa~140MPa,抗拉强度为220MPa~265MPa,伸长率为7%~14%。此外,本发明的制备方法简单,性能优异,适用于大型一体式压铸汽车结构件,另外,合金对Fe元素容忍度高,可以直接用再生铝进行生产,降低能耗,适合大量推广。
-
公开(公告)号:CN117845105B
公开(公告)日:2024-12-10
申请号:CN202311664579.7
申请日:2023-12-06
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
IPC: C22C21/02 , C22C21/14 , C22C21/16 , C22C21/08 , C22C1/03 , C22F1/043 , C22F1/047 , C22F1/05 , C22F1/057
Abstract: 本发明涉及一种高强韧铸造铝合金及其制备方法与应用。本发明高强韧铸造铝合金的组分为Si 4~10%,Cu 2~5%,Mg 0.3~2%,Fe 0.05~0.2%,Ti0.01~0.1%,Sb 0.02~0.1%,Bi 0.02~0.2%和Hf0.02~0.2%,其余为Al;不可避免杂质元素含量
-
公开(公告)号:CN117758110B
公开(公告)日:2024-10-25
申请号:CN202311742584.5
申请日:2023-12-18
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
Abstract: 本发明涉及一种耐高温铸造铝合金及其制备方法与应用,属于铝合金技术领域。本发明的耐高温铸造铝合金的元素组成及其质量百分比为:Si 1%‑10%、Cu 0.1%‑4%、Mg 0.05%‑0.5%、Fe 0.05%‑0.3%、Ti 0.01%‑0.3%、Mn 0.1%‑0.5%、Cr 0.01%‑0.6%、V 0.02%‑0.2%、Sn 0.02%‑0.2%、Sc 0.02%‑0.2%、Hf0.02%‑0.2%、Er 0.02%‑0.2%,余量为其他不可避免的杂质和Al;所述耐高温铸造铝合金的微结构包括亚微米析出相和/或纳米析出相。通过控制合金成分、配比以及制备方式,合理设置热处理和时效处理参数,同时获得一种以上一定组分、尺寸以及特征的亚微米级别和纳米级别的耐高温粗化析出相,有效提升铝合金在高温环境下的强度,强化了铝合金的耐高温性能。
-
公开(公告)号:CN118726798A
公开(公告)日:2024-10-01
申请号:CN202411232226.4
申请日:2024-09-04
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
Abstract: 本发明属于铝合金材料领域,具体涉及一种高强韧高抗疲劳性能铸造铝合金及其制备方法。铝合金的基体中包括两种及以上的纳米尺寸相,其元素组成包含Al、Si、Cu、Mg元素中的Al与其他任意一种及多种元素,以及Sn、Ag、Zn、In、Hf中的一种及多种;合金中同时包括两种及以上的亚微米尺寸相,其元素成分包括Al、Fe、Mn、Cr、V、Zr、Ti、Mo元素中的Al与其他任意一种或多种,以及Cu、Ni、Y、Er、Nb元素中的任意一种或多种。制备方法包括对铝合金铸锭进行非等温+等温固溶及时效处理,本发明铸造铝合金及制备方法实现了纳米尺寸相和亚微米尺寸强化相的数量密度和尺寸调控,提高了合金的强韧性及抗疲劳强度。
-
公开(公告)号:CN117758110A
公开(公告)日:2024-03-26
申请号:CN202311742584.5
申请日:2023-12-18
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
Abstract: 本发明涉及一种耐高温铸造铝合金及其制备方法与应用,属于铝合金技术领域。本发明的耐高温铸造铝合金的元素组成及其质量百分比为:Si 1%‑10%、Cu 0.1%‑4%、Mg 0.05%‑0.5%、Fe 0.05%‑0.3%、Ti 0.01%‑0.3%、Mn 0.1%‑0.5%、Cr 0.01%‑0.6%、V 0.02%‑0.2%、Sn 0.02%‑0.2%、Sc 0.02%‑0.2%、Hf0.02%‑0.2%、Er 0.02%‑0.2%,余量为其他不可避免的杂质和Al;所述耐高温铸造铝合金的微结构包括亚微米析出相和/或纳米析出相。通过控制合金成分、配比以及制备方式,合理设置热处理和时效处理参数,同时获得一种以上一定组分、尺寸以及特征的亚微米级别和纳米级别的耐高温粗化析出相,有效提升铝合金在高温环境下的强度,强化了铝合金的耐高温性能。
-
公开(公告)号:CN115433856B
公开(公告)日:2023-09-05
申请号:CN202211151641.8
申请日:2022-09-21
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
Abstract: 本发明公开了一种铸造铝合金及其制备方法,属于铝合金材料领域,所述免热处理铸造铝合金包括Al、Si,以及Fe、Mn、Cr、Zr、Mo、Ni、Mg、Zn、Cu、V元素中的任意两种或多种,所述制备方法包括将铝合金原料预热干燥,以纯金属或中间合金的方式加入熔炼炉加热熔化,得到合金熔体,之后精炼除气除杂并铸造得到铝合金铸锭,所述铝合金的微观组织的基体中包括一种以上的二至五元金属间化合物强化相及共晶Si相,使得铝合金具有优秀的铸态强韧性能。
-
公开(公告)号:CN118726798B
公开(公告)日:2024-12-24
申请号:CN202411232226.4
申请日:2024-09-04
Applicant: 苏州大学 , 魏桥(苏州)轻量化研究院有限公司
Abstract: 本发明属于铝合金材料领域,具体涉及一种高强韧高抗疲劳性能铸造铝合金及其制备方法。铝合金的基体中包括两种及以上的纳米尺寸相,其元素组成包含Al、Si、Cu、Mg元素中的Al与其他任意一种及多种元素,以及Sn、Ag、Zn、In、Hf中的一种及多种;合金中同时包括两种及以上的亚微米尺寸相,其元素成分包括Al、Fe、Mn、Cr、V、Zr、Ti、Mo元素中的Al与其他任意一种或多种,以及Cu、Ni、Y、Er、Nb元素中的任意一种或多种。制备方法包括对铝合金铸锭进行非等温+等温固溶及时效处理,本发明铸造铝合金及制备方法实现了纳米尺寸相和亚微米尺寸强化相的数量密度和尺寸调控,提高了合金的强韧性及抗疲劳强度。
-
公开(公告)号:CN115522102B
公开(公告)日:2023-07-18
申请号:CN202211249136.7
申请日:2022-10-12
Applicant: 苏州大学 , 山东魏桥轻量化材料有限公司
Abstract: 本发明公开了一种铝合金导电材料及其制备方法,涉及铝合金技术领域。所述铝合金导电材料各元素重量百分比为:Ca3~11wt%,Nb0.05~0.1%,Nd0.05~0.1%,B0.05~0.1%,Ag0.05~0.1%,余量为杂质和Al,该铝合金的组织中共晶强化相Al4Ca的体积分数为7~25%,共晶Al4Ca相为细小的纤维状形貌,单个纤维的直径为0.1~2μm。本发明铝合金制备时按预设方式添加各成分后对铝合金进行熔炼、精炼并铸锭处理,得到所述铝合金导电材料。本发明铝合金导电材料能有效实现Al‑Ca合金组织调控,使铝合金具有优良的塑性变形能力和较高的导电性。
-
公开(公告)号:CN113699404B
公开(公告)日:2022-06-24
申请号:CN202110980049.8
申请日:2021-08-25
Applicant: 苏州大学 , 邹平宏发铝业科技有限公司 , 山东宏桥新型材料有限公司
Abstract: 本发明公开了一种铝废料净化用复合盐及其制备、使用方法,所述铝废料净化用复合盐包括按质量百分比的如下组分:MgHBO315‑30%,NaCl10‑30%,CaCl210‑30%,KCl10‑30%,Al2O310‑30%,C2Cl65‑20%,MgO5‑15%;其制备方法包括按所述质量百分比称取复合盐原料,放入球磨罐中进行球磨混合一定时间所述铝废料净化用复合盐;所述使用方法包括熔炼废铝合金形成熔体、向铝合金熔体中加复合盐、熔体搅拌及扒渣,本发明能有效降低铝合金熔体中Fe含量,促进铝合金循环利用。
-
公开(公告)号:CN113699407A
公开(公告)日:2021-11-26
申请号:CN202111019409.4
申请日:2021-09-01
Applicant: 苏州大学
Abstract: 本发明公开了一种石墨烯铝基复合材料的制备方法,其通过将由石墨烯、石墨烯氧化物、Al2O3、KCl、MgO和纯铝、纯铜粉末混合球磨后制成预制料,然后将所述预制料加入在一定条件下熔炼后的铝合金熔体中搅拌均匀,在吹气完成后再将熔体浇铸成型后得石墨烯铝基复合材料,本发明制备的石墨烯铝基复合材料成分分布均匀、导热导电性能高、成本低。
-
-
-
-
-
-
-
-
-