一种基于解耦自适应判别性特征学习的行人重识别方法

    公开(公告)号:CN110443174B

    公开(公告)日:2021-08-10

    申请号:CN201910683172.6

    申请日:2019-07-26

    Applicant: 浙江大学

    Abstract: 本发明公开了一种基于解耦自适应判别性特征学习的行人重识别方法,包括:(1)选取已有的行人重识别模型,将模型分为特征抽取层和分类器层;(2)在训练阶段,每训练完N遍数据后对分类器层的参数进行随机初始化,特征抽取层的学习率随数据的迭代不断降低,分类器层的学习率保持不变;训练直到目标函数收敛;(3)在测试阶段,只保留特征抽取层,作为训练好的网络模型;(4)在行人检索阶段,用训练好的网络模型抽取图片库中每张图片的特征向量,将待查询行人图片特征向量和图片库中每张图片特征向量进行相似度排序并选择排序最靠前的图片的身份作为最终识别结果。利用本发明,可以很好地解决了现在行人特征学习网络优化不充分的问题。

Patent Agency Ranking