-
公开(公告)号:CN112536058A
公开(公告)日:2021-03-23
申请号:CN202011411470.9
申请日:2020-12-03
Applicant: 济南大学
Abstract: 本发明属于氧化剂制备技术领域,公开了一种用于氧析出和氧还原的双功能催化剂及其制备方法,取泡沫镍,浸入HCl溶液中,取出用去离子水清洗,然后在烘箱中干燥;将泡沫镍放入含有CoCl2·6H2O和NiCl2·6H2O的溶液中用循环伏安法在泡沫镍表面沉积氢氧化镍钴复合材料;将经过电沉积之后得到的泡沫镍取出,洗涤后干燥;将泡沫镍与三聚氰胺混合物和硫脲分别置于双区温度控制管式炉的下风口部和上风口部,进行加热。本发明的催化剂在OER中的起始电势为1.52V(vs.RHE),在ORR中,与20%商业Pt/C作对比,起始电位为0.95V(vs.RHE),具有更好的甲醇耐受性和稳定性。
-
公开(公告)号:CN110911698A
公开(公告)日:2020-03-24
申请号:CN201911211468.4
申请日:2019-12-02
Applicant: 济南大学
Abstract: 本发明提供了一种氧还原催化剂的制备方法,依次通过水热和煅烧的方法将铜、钴和镍三种过渡金属纳米颗粒嵌入到粒径均一的氮掺杂碳纳米管中且过渡金属均匀分布在顶端和管体上。步骤简单,成本低,制备的催化剂,与已报道的纳米碳化物相比,具有良好的起始电位和半波电位,且具有优良的耐甲醇性和稳定性,能在金属-空气电池、燃料电池等电化学能量转换设备中应用,具有重要意义。
-
公开(公告)号:CN108010732B
公开(公告)日:2019-04-30
申请号:CN201711233701.X
申请日:2017-11-30
Applicant: 济南大学
Abstract: 本发明公开了一种应用于超级电容器的纳米复合材料的制备方法,其特征在于:包括以下步骤:S1、聚苯胺纳米纤维的制备;S2、双金属氧化物的制备;S3、聚苯胺与铁酸钴双金属氧化物复合材料的制备;S4、复合材料/泡沫镍电极片制备。该应用于超级电容器的纳米复合材料的制备方法,解决了以往出现的铁钴双金属氧化物导电性能差的缺陷,以获得良好的储能特性的超级电容器材料,电极材料表现出高达2194F/g的比电容,以及良好的倍率特性,在20A/g的电流密度下仍然达到1080F/g,要优于以往报道中铁酸钴纳米复合材料的比电容性能,且通过与导电高分子聚合物复合,提高了材料的导电性,更利于材料实现产业化,是非常有潜力的超级电容器材料。
-
公开(公告)号:CN107999133A
公开(公告)日:2018-05-08
申请号:CN201711233904.9
申请日:2017-11-30
Applicant: 济南大学
Abstract: 本发明公开了一种新型HER电化学催化剂的制备与运用,包括以下步骤:S1、银纳米粒子的合成;S2、银金多孔中空纳米壳的合成;S3、在金属粒子表面合成MOF;S4、样品的煅烧与磷化。该新型HER电化学催化剂的制备与运用,具有plasmonic增强效应,且结合球壳外还有一层FeP,能够进一步降低起始超电势,因此相对来说具有更加优良的电化学催化性能和稳定性,由于材料本身所具有的特殊结构,在光照的条件下,光照性能相对其他材料有更大程度的加强作用,在电势为-0.5V的条件下,合成的Ag-AuHPNSs@FeP的光电流最大,另外,Ag-AuHPNSs@FeP的起始电势为108mV,塔菲尔曲线斜率为108mVdec-1,相对其他材料均为最小,从而使得由此得到的新能源催化剂的催化效率得到提高。
-
公开(公告)号:CN105977502A
公开(公告)日:2016-09-28
申请号:CN201610385694.4
申请日:2016-06-03
Applicant: 济南大学
CPC classification number: H01M4/9041 , B82Y30/00 , H01M4/8825 , H01M4/9083
Abstract: 本发明涉及一种以泡沫镍为基体的三维石墨烯/银纳米粒子复合材料及其制备方法,包括如下步骤:配制0.2~4mg/ml氧化石墨烯水溶液;取泡沫镍浸泡到氧化石墨烯水溶液中,超声,制得负载有氧化石墨烯的泡沫镍材料,材料干燥,得泡沫镍‑氧化石墨烯复合产物;将泡沫镍‑氧化石墨烯复合产物浸泡在硝酸银溶液中,并加入氢氧化钠溶液,反应条件为30‑100℃,时间20‑100min,冷却、分离、清洗、干燥,得到以泡沫镍为基体的三维石墨烯/银纳米粒子复合材料。该方法在制备过程中有效的减缓了还原氧化石墨烯的层叠、不可逆团聚问题,还原得到的银粒子尺寸达到纳米级别,大小可控,充分地提高了银粒子的电催化活性。
-
公开(公告)号:CN110911698B
公开(公告)日:2022-05-27
申请号:CN201911211468.4
申请日:2019-12-02
Applicant: 济南大学
Abstract: 本发明提供了一种氧还原催化剂的制备方法,依次通过水热和煅烧的方法将铜、钴和镍三种过渡金属纳米颗粒嵌入到粒径均一的氮掺杂碳纳米管中且过渡金属均匀分布在顶端和管体上。步骤简单,成本低,制备的催化剂,与已报道的纳米碳化物相比,具有良好的起始电位和半波电位,且具有优良的耐甲醇性和稳定性,能在金属‑空气电池、燃料电池等电化学能量转换设备中应用,具有重要意义。
-
公开(公告)号:CN107991360B
公开(公告)日:2020-02-14
申请号:CN201711167335.2
申请日:2017-11-21
Applicant: 济南大学
Abstract: 本发明公开了一种用于检测三硝基甲苯的电化学传感器材料制备方法,将石墨粉,KMnO4,H2SO4和H3PO4加入H2O2在去离子水中洗涤得到氧化石墨烯,进行超声处理,加入聚乙烯吡咯烷酮、硝酸银、柠檬酸钠水溶液冷凝回流,在去离子水离心洗涤得到Ag‑RGO分散于去离子水中超声处理,加入H2PtCl6溶液、PdCl2溶液后在去离子水离心洗涤、离心浓缩得到用于检测三硝基甲苯的电化学传感器材料。本发明的有益效果是方法简单,所用检测材料设备容易制备。
-
公开(公告)号:CN109433240A
公开(公告)日:2019-03-08
申请号:CN201811254247.0
申请日:2018-10-26
Applicant: 济南大学
Abstract: 本发明提供了一种氮掺杂碳纳米阵列负载磷化铁/磷化钴的制备方法,包括以下步骤:将聚苯胺-铁钴金属有机骨架在保护气体中煅烧,获得前驱体;然后在保护气体中将前驱体加热条件下磷化即得。本发明所制备新型磷化物负载于氮掺杂碳纳米阵列的方法所制备催化剂产氢性能优越,材料制作过程容易操控、长时间稳定性好,相较现行贵金属催化剂,成本更低。可应用于电化学电池析氢电极生产。
-
公开(公告)号:CN109402450A
公开(公告)日:2019-03-01
申请号:CN201811136722.4
申请日:2018-09-28
Applicant: 济南大学
Abstract: 本发明涉及金属材料防腐领域,特别涉及一种含锆元素的热镀用锌铝镁合金及其制备方法。所述含锆元素的热镀用锌铝镁合金由Zn、Al、Mg和Zr元素组成,所述合金中各组分质量百分比如下:Al:4.0~5.0 wt.%、Mg:0.05~0.15 wt.%、Zr:0.05~0.5 wt.%、余量为Zn。本发明通过向锌铝镁合金中添加适量的锆元素,大大提高了合金的形核率,使初生相的形核点增多,富锌相的分布更加均匀,并使锌铝二元共晶组织变得更加细小和致密,细化了热浸镀锌铝镁合金的显微组织,并且提高热浸镀锌铝镁合金的耐腐蚀性能和抗划伤性。
-
公开(公告)号:CN108195903A
公开(公告)日:2018-06-22
申请号:CN201711422209.7
申请日:2017-12-25
Applicant: 济南大学
Abstract: 本发明公开了一种对砷检测的电化学传感材料的制备方法,具体步骤是:步骤一:银纳米粒子的合成:(1)、将所有要使用的玻璃仪器用王水浸泡几分钟后,用二次水冲刷干净;(2)、将0.125ml AgNO3(0.2M)分散在50ml的去离子水中并用磁力搅拌;(3)、将上述溶液加热至沸腾后,加入3ml sodium citrate(W:1%)和2mlVC(0.1M);(4)、将混合溶液加热5-10min后,用二次水离心洗涤数次并分散在去离子水中;本发明利用电化学传感技术,使合成的材料能够迅速、灵敏、准确的探测到被测物质中的砷的含量,从而及时的对被污染物质进行处理,另外在检测过程中,其他杂质离子对于目的检测物质不会产生干扰。
-
-
-
-
-
-
-
-
-