-
公开(公告)号:CN110347857B
公开(公告)日:2020-12-01
申请号:CN201910491117.7
申请日:2019-06-06
Applicant: 武汉理工大学
Abstract: 本发明提供一种基于强化学习的遥感影像语义标注方法,包括如下几个步骤:数据获取;数据预处理;切割影像数据;制作样本集标注;构建强化学习网络模型;设置训练参数;选取训练集、验证集;使用训练集训练视觉语义嵌入网络;使用训练集训练value网络;使用训练集训练policy网络;使用训练集联合训练policy、value网络;使用验证集进一步优化网络参数;验证模型效果。本发明的目的就是将计算机视觉领域与遥感领域相结合,以强化学习的理念为基础对传统的VGG接GRU模型进行改进,进而解决传统方法的大样本量、训练周期长的问题,同时利用强化学习中实时反馈的机制可以减少目前遥感中难以解决的“同物异谱”、“异物同谱”问题对精度的影响。
-
公开(公告)号:CN110347857A
公开(公告)日:2019-10-18
申请号:CN201910491117.7
申请日:2019-06-06
Applicant: 武汉理工大学
Abstract: 本发明提供一种基于强化学习的遥感影像语义标注方法,包括如下几个步骤:数据获取;数据预处理;切割影像数据;制作样本集标注;构建强化学习网络模型;设置训练参数;选取训练集、验证集;使用训练集训练视觉语义嵌入网络;使用训练集训练value网络;使用训练集训练policy网络;使用训练集联合训练policy、value网络;使用验证集进一步优化网络参数;验证模型效果。本发明的目的就是将计算机视觉领域与遥感领域相结合,以强化学习的理念为基础对传统的VGG接GRU模型进行改进,进而解决传统方法的大样本量、训练周期长的问题,同时利用强化学习中实时反馈的机制可以减少目前遥感中难以解决的“同物异谱”、“异物同谱”问题对精度的影响。
-