-
公开(公告)号:CN119470390A
公开(公告)日:2025-02-18
申请号:CN202510047999.3
申请日:2025-01-13
Applicant: 浙江工业大学
IPC: G01N21/65 , G06N3/0499 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于神经网络的拉曼光谱自动调节与重建方法,应用于拉曼光谱系统,所述基于神经网络的拉曼光谱自动调节与重建方法包括:按照预设的第一温度、预设的第一积分时间、预设的第一增益和预设的第一偏置采集得到第一拉曼光谱信号。本基于神经网络的拉曼光谱自动调节与重建方法通过自动调节模型,自动调节积分时间、偏置和增益,无需手动操作,有效提升了拉曼光谱系统的动态范围和信噪比,使弱拉曼光谱信号更容易被识别,增强了检测灵敏度,也提升了检测的动态范围;并且自动调节模型中通过对宽度模块与深度模块的加权,提升了自动调节模型输出的准确性和灵活性。
-
公开(公告)号:CN118135616B
公开(公告)日:2024-10-01
申请号:CN202410262213.5
申请日:2024-03-07
Applicant: 浙江工业大学
IPC: G06V40/12 , G06T7/40 , G06N3/0464 , G06N3/088
Abstract: 本发明公开了一种基于无监督低光照非接触式指纹增强方法和装置,首先构建并训练无监督低光照非接触式指纹增强网络模型,所述无监督低光照非接触式指纹增强网络模型包括图像分解模块和纹理增强模块;然后非接触式采集指纹图像,输入到图像分解模块,获取指纹图像的光照分量、反射分量和噪声分量;最后重建反射分量,并将重建后的反射分量作为纹理增强网络模块的输入,获得纹理增强后的反射分量,对光照分量进行伽马变换,然后与纹理增强后的反射分量相乘,重建指纹图像。本发明提高非接触式指纹的照度,同时更加关注指纹的纹理结构,从而使增强后的指纹图像边缘区域纹理更加明显。
-
公开(公告)号:CN118351601A
公开(公告)日:2024-07-16
申请号:CN202410513939.1
申请日:2024-04-26
Applicant: 浙江工业大学
IPC: G06V40/40 , G06V10/44 , G06T7/136 , G06V10/25 , G06V10/764
Abstract: 本发明涉及图像处理和指纹活体防伪技术领域,特别涉及一种基于散斑方差的光学相干层析成像的手指活体防伪方法。本发明通过B‑scan扫描获取样本的时序B‑scan图像;对时序B‑scan图像进行特征区域提取,保留感兴趣区域;使用散斑方差技术去除时序B‑scan图像中静止的结构信息的干扰,提取其中的活体信息,经过阈值分割,去除残留的无效信息;将阈值分割的结果与设定的活体阈值进行比较,得出样本的活体防伪结果。本发明运行速度快,不会增加额外的计算负担,且具有高度的通用性和灵活性。
-
公开(公告)号:CN118090699A
公开(公告)日:2024-05-28
申请号:CN202410093578.X
申请日:2024-01-23
Applicant: 浙江工业大学
IPC: G01N21/65 , G06V10/764 , G06V10/82 , G06V10/52 , G06V10/26 , G06N3/0464 , G06N3/048 , G06N3/082 , G06N3/084
Abstract: 本发明涉及到差分拉曼光谱技术,特别涉及一种结合差分拉曼光谱和SE‑Res2Net的黄曲霉素检测方法。测得含有黄曲霉素以及不含有黄曲霉素的待测物的差分拉曼光谱;构建模型,初始化模型参数;将黄曲霉素的差分拉曼光谱和待测物的差分拉曼光谱输入模型得到特征图X;将特征图X输入Res2Net模块,得到特征图Y5;将特征图Y5输入SE模块,得到特征图f';通过跳跃连接的方式将特征图X连接到特征图f'上,得到特征图f;得到待测物中是否含有黄曲霉素的概率,完成模型的训练;验证模型并更新参数。本发明有效去除拉曼光谱中的荧光、环境光等干扰,增强拉曼光谱中的特征峰,提高检测准确率。
-
公开(公告)号:CN113034475B
公开(公告)日:2024-04-19
申请号:CN202110339571.8
申请日:2021-03-30
Applicant: 浙江工业大学
IPC: G06T7/00 , G06T5/70 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08 , G06T5/60
Abstract: 一种基于轻量级三维卷积神经网络的手指OCT体数据去噪方法,包括如下步骤:1)构建轻量级三维卷积模块;2)构建轻量级三维卷积神经网络模型,设定参数,进行训练;3)利用训练好的轻量级三维卷积神经网络,对OCT体数据进行去噪。本发明可以对手指体数据整体进行去噪,并且将网络轻量化,减少网络训练参数,加快去噪速度。
-
公开(公告)号:CN116721212A
公开(公告)日:2023-09-08
申请号:CN202310687724.7
申请日:2023-06-12
Applicant: 浙江工业大学
IPC: G06T17/00 , G06T7/80 , G06T3/40 , G06V40/13 , G06V40/12 , G06N3/0464 , G06N3/048 , G06N3/0475 , G06N3/094
Abstract: 一种基于无监督超分辨率的三维指纹方法,包括如下步骤:1)设计无监督超分辨率网络模型;2)使用系统采集的条纹投影指纹图像,通过无监督超分辨率神经网络模型来提高条纹投影指纹图像的分辨率,利用超分辨率后的图像进行三维重建,得到指纹的三维结构。本发明设计了一个无监督神经网络能够解决单一低分辨率条纹投影指纹的超分辨率,同时也改善结构光采集到的条纹投影指纹边缘模糊现象,从而使三维重建后的指纹图像更加清晰,精度更高。
-
公开(公告)号:CN115273158A
公开(公告)日:2022-11-01
申请号:CN202210691578.0
申请日:2022-06-17
Applicant: 浙江工业大学
Abstract: 一种基于OCT体数据的手指伪造攻击检测方法,包括:检测内外部指纹的细节点数量和皮下汗腺的数量;设置细节点数量阈值num1,num2,汗腺数量阈值num3,内外指纹匹配得分阈值t,皮下汗腺位置和内指纹脊线重合率n;若内指纹细节点数量多于num1且外指纹细节点数量多于num2,则计算内外指纹匹配得分;若内指纹细节点数量少于num1,则直接判断为手指伪造攻击;若汗腺数量少于num3,则直接判断为手指伪造攻击;若汗腺数量多于num3,如果内外指纹匹配得高于t则系统直接通过检测;若汗腺数量少于num3的同时,内指纹的细节点数量少于num1,则进入下个步骤;计算皮下汗腺位置和内指纹的脊线重合率;若重合率高于设定值n,则通过检测,否则判断为手指伪造攻击。
-
公开(公告)号:CN110334566B
公开(公告)日:2021-08-03
申请号:CN201910219860.7
申请日:2019-03-22
Applicant: 浙江工业大学
Abstract: 一种基于三维全卷积神经网络的OCT内外指纹提取方法,包括如下步骤:1)对每幅指纹OCT图像中的角质层区域位置和乳头层区域位置进行手工标注,得到与OCT图像对应的标注图片,进行ROI提取和数据增强,构成标注数据集;2)构建三维全卷积神经网络模型,设定训练参数和损失函数,使用标注好的数据集训练模型;3)通过训练好的全卷积神经网络模型预测未标注的OCT图像的角质层、乳头层;4)根据所有OCT图像的角质层和乳头层,按照相对深度以及OCT图像空间顺序,经过拼接,分别得到OCT指纹的外指纹和内指纹。本发明通过三维全卷积神经网络来学习提取OCT图像的角质层和乳头层特征,从而生成准确的内外指纹。
-
公开(公告)号:CN111723848A
公开(公告)日:2020-09-29
申请号:CN202010452771.X
申请日:2020-05-26
Applicant: 浙江工业大学
Abstract: 一种基于卷积神经网络和数字全息的海洋浮游生物自动分类方法,包括以下步骤:1)使用数字全息系统拍摄海洋浮游生物的全息图像;2)构建卷积神经网络模型,设定卷积层数,卷积核尺寸,训练参数和损失函数,将1)中得到的图片输入至神经网络中,运行神经网络,获得最终分类结果。本发明针对目前数字全息系统对海洋浮游生物的广泛应用,为满足高效率、低成本和快速性的要求,利用数字全息技术结合深度学习技术,公开了一种基于数字全息图像的海洋浮游生物快速分类方法。
-
公开(公告)号:CN111666813A
公开(公告)日:2020-09-15
申请号:CN202010356352.6
申请日:2020-04-29
Applicant: 浙江工业大学
Abstract: 一种基于非局部信息的三维卷积神经网络的皮下汗腺提取方法,包括如下步骤:1)利用归一化算法图像增强后,通过截取局部数据和数据旋转进行数据增广;2)通过添加Non_local模块构建基于非局部信息的三维卷积神经网络模型,损失函数采用Dice损失函数;3)将步骤一获取的训练集输入神经网络进行训练;4)利用汗腺体的大小的一定规律和汗腺体上下端的位置偏差不会太大的特性从初步的三维汗腺体图像中筛选并去除伪汗腺体。本发明充分利用指纹切片之间的像素相关性,利用非局部的信息来增加信息量,增强汗腺体信息,提高了指汗腺体检测的准确率。
-
-
-
-
-
-
-
-
-