-
公开(公告)号:CN116471330A
公开(公告)日:2023-07-21
申请号:CN202310426170.5
申请日:2023-04-17
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L67/568 , G06N20/20 , G06N3/04 , G06N3/08
Abstract: 本公开提供了一种适用于无线网络的社交感知缓存方法及系统,涉及无线通信技术领域,方法包括在边缘用户网络区域内,根据物理图和社会关系图将用户和设备划分成不同的组并获取社交感知通信图;通过社交感知通信图判断终端用户所在区域内潜在的连接对象,并通过信任交付机制筛选可信任用户的用户集,将可信任用户的用户集作为缓存节点来获取缓存内容;获取缓存内容后,基于联邦元学习与深度学习的缓存内容推荐模型预测用户内容偏好,将预测结果缓存在被选出的用作缓存节点的用户上,并对下一时刻的用户对于不同内容的偏好进行缓存内容的分配,在优化能耗的基础上,使其传输延迟和传输成本花费最小。本公开实现缓存内容推送的精准。
-
公开(公告)号:CN116436770A
公开(公告)日:2023-07-14
申请号:CN202310443248.4
申请日:2023-04-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L41/0677 , H04L43/08 , H04L43/10
Abstract: 本发明提出基于混合带内网络遥测的灰色故障检测定位方法及系统,涉及故障检测领域。包括:服务器收集被动INT探测包的逐跳遥测信息,对是否存在故障进行一次检测,向虚拟SDN网络的控制器发送存在故障路径的二次检测指令;控制器向服务器发送主动INT探测包,对一次检测中存在故障的路径进行二次检测;源服务器重新路由真正存在故障的路径信息的数据流量;控制器为所有真正存在故障的路径信息设置优先级,根据优先级进行路径之间的比较,得到故障位置;控制器将故障位置反馈给服务器,服务器查找所有与故障位置相关的路径并提前老化。本发明将主动带内网络遥测和被动带内网络遥测进行整合,弥补单一遥测方法的不足,提高网络遥测的效率和可靠性。
-
公开(公告)号:CN116166895A
公开(公告)日:2023-05-26
申请号:CN202211585376.4
申请日:2022-12-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: G06F16/9537 , G06F16/909 , G06F16/9038
Abstract: 本发明涉及基于物化视图的时空范围查询方法、系统、设备及介质,包括:获取搜索请求,搜索请求包括各个第一待匹配数据;根据搜索请求,在物化视图表中的每一个层级中的各个节点中搜索与各个第一待匹配数据匹配的各个第一存储数据作为目标匹配数据;其中,物化视图表为存储多个层级对应的第一存储数据的数据库,每个层级对应一个类别的第一存储数据。解决当前移动轨迹数据查询效率低、速度慢的问题。
-
公开(公告)号:CN116094792A
公开(公告)日:2023-05-09
申请号:CN202211731395.3
申请日:2022-12-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: H04L9/40 , G06N3/08 , G06N3/0464
Abstract: 本发明涉及基于时空特征和注意力机制的加密恶意流识别方法及装置,其方法包括将原始数据流进行数据预处理,得到初始数据流;根据初始数据流建立流量轨迹拓扑图;从流量轨迹图中提取关键节点特征,得到关键节点特征集;利用关键节点特征集建立节点级空间注意特征图;从节点级空间注意特征图中提取空间特征,得到空间特征集;从空间特征集中提取空间特征集的时间特征,得到时间特征集;将空间特征集与时间特征集融合,得到空间时间特征集;对空间时间特征集进行权重分配,得到模型训练特征集;训练深度学习模型,得到加密恶意流识别模型,并用加密恶意流识别模型识别加密恶意数据流。本发明能够更全面地把握流量特征,提高加密恶意流量的检出率。
-
公开(公告)号:CN119420708B
公开(公告)日:2025-04-18
申请号:CN202510020273.0
申请日:2025-01-07
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明涉及数据传输技术领域,本发明公开了一种时间敏感网络跨域流量调度方法、系统、介质及设备,包括:对于当前时间步,在状态下,通过主网络和贪婪策略进行动作选择后,计算动作执行后的奖励和下一时间步状态;将当前时间步的状态、动作、奖励和下一时间步状态作为一个转移,存储到重放记忆,当重放记忆中转移的个数达到阈值,则从重放记忆中采样多个转移;对于采样的每个转移,通过目标网络和Munchausen机制,计算每个分支的时间差目标值;通过主网络,计算每个分支的预测Q值;计算得到均方误差,基于均方误差更新主网络的参数;每间隔若干时间步,将主网络的参数赋值给目标网络。保证了流量调度的实时性和路由选择的可靠性。
-
公开(公告)号:CN118945116A
公开(公告)日:2024-11-12
申请号:CN202411212329.4
申请日:2024-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L47/125 , H04L45/00 , H04L45/02 , H04L45/12 , H04L45/30
Abstract: 本发明提出一种数据中心网络中负载均衡的实现方法及系统,方法包括:根据传输带宽,将数据流划分为象流和鼠流;将所有可达路径节点的网络负载信息打包为探测包,广播到全网;基于探测包信息,获取带宽因子、象流关键度因子和队列长度指数,为象流和鼠流分配传输路径;具体为:对象流进行改进蚁群算法迭代,将带宽因子和象流关键度因子作为蚁群寻路的依据,获取并比较最优解集合不同路径的开销,将象流转发到开销最小的路径;对鼠流计算可达路径时延,将队列长度指数和时延作为鼠流选路的依据,筛选符合时延限制的路径,将鼠流转发到开销最小的路径。通过将流量按照其自身传输需求分配到不同路径,提高链路带宽利用率并降低了时延。
-
公开(公告)号:CN117749637A
公开(公告)日:2024-03-22
申请号:CN202311777845.7
申请日:2023-12-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04L41/14 , H04L41/0894
Abstract: 本发明公开了一种网络损伤组合化模拟实现方法及系统,其中方法包括:获取网络流,查询网络流的网络损伤需求;将网络损伤需求拆分成若干个损伤功能,分析损伤功能串行组合的可行性以及并行组合的可行性,并生成组合化策略;检查组合化策略中是否存在可优化的并行组合,对可优化的并行组合进行优化,得到优化后的组合化策略;依照优化后的组合化策略,构建网络损伤组合并行图;按照网络损伤组合并行图进行网络损伤模拟。在保证损伤功能逻辑正确性的前提下,显著优化了损伤功能的组合处理延迟以及部署开销。
-
公开(公告)号:CN117150341A
公开(公告)日:2023-12-01
申请号:CN202311102973.1
申请日:2023-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/24 , G06F18/214 , G06N3/0464 , G06N3/048 , G06N3/08 , H04L9/40
Abstract: 本发明提出了一种基于混合深度学习的加密流量分类方法及系统,涉及网络安全技术领域,具体方案包括:对采集的原始加密流量数据进行预处理,将其转换为统一格式的字节序列;利用训练好的混合深度学习模型对所述字节序列进行分类预测,得到加密流量的分类结果;本发明基于卷积神经网络、时间卷积神经网络以及通道注意力机制的混合深度学习模型,进行时空特征的提取及关注关键特征,从而增强时空特征提取的鲁棒性,提高加密流量分类的效率和准确度。
-
公开(公告)号:CN117062094A
公开(公告)日:2023-11-14
申请号:CN202311047327.X
申请日:2023-08-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本公开提供了一种雾无线接入网络中边缘缓存主动放置方法及系统,涉及无线通信技术领域,构建F‑RAN无线网络模型,获取F‑RAN无线网络模型的边缘节点以及缓存容量;获取需缓存的用户的请求内容,引入队列理论,设计到达速率的共享队列模型以及三种传输模式,将三种传输模式的到达率问题转换为内容放置时延最小的模型的求解,通过采用贪心算法,使每个缓存节点都缓存尽可能多的流行内容,直至缓存存储容量受限;考虑各个F‑AP节点的局部内容的流行度,使进行缓存时依据请求内容的流行度和请求内容大小进行缓存主动放置;本公开解决了现有边缘缓存方案中延迟控制不准确及流量成本过高的问题。
-
公开(公告)号:CN116994054A
公开(公告)日:2023-11-03
申请号:CN202310986619.3
申请日:2023-08-07
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/098
Abstract: 本发明公开了面向类别不平衡的联邦学习图像分类方法及系统,多个客户端按照标准的联邦学习方法联合训练一个全局模型;每个客户端将本地训练数据划分为头类和尾类,计算得到尾类所对应的混淆类,基于类激活图对本地训练数据中的尾类和对应的混淆类进行特征提取,得到尾类特有特征和混淆类通用特征;每个客户端将尾类特有特征与对应的混淆类通用特征进行特征融合,得到尾类的增广样本,以增强本地训练数据;每个客户端使用增强的本地训练数据对全局模型进行微调,并将其上传到服务器来进一步更新全局模型。此外,本发明设计了一个新的损失函数TailDistillation Loss,能够减轻全局类不平衡的影响。
-
-
-
-
-
-
-
-
-