-
公开(公告)号:CN117349894B
公开(公告)日:2024-03-01
申请号:CN202311629347.8
申请日:2023-12-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/62 , G06F21/60 , G06F21/33 , G06N5/022 , G06N5/02 , G06F16/36 , G06F16/901 , G06F16/903 , H04L9/40 , H04L9/00 , H04L9/06 , H04L9/08
Abstract: 本发明属于保密通信的技术领域,更具体地,涉及一种基于填充字典加密的图结构最短路径查询方法。所述方法包括数据拥有者构造填充字典结构的密文图;数据拥有者向有查询需求的用户通过安全信道发送授权令牌;生成查询令牌,用户将查询令牌发送至云服务器端;云服务器在接收到密文图和查询令牌之后,进行最短距离查询;获取明文查询结果。本发明解决了现有技术中用户的数据存储在第三方服务器上,可能会面临数据泄露和安全漏洞的风险以及查询效率较低的问题。(56)对比文件于莹莹.图数据精确最短距离的隐私保护外包计算方案《.计算机工程》.2023,第49卷(第9期),第158-171页.Xin Wang 等.App-Net: A Hybrid NeuralNetwork for Encrypted Mobile TrafficClassification《.IEEE INFOCOM 2020 - IEEEConference on Computer CommunicationsWorkshops (INFOCOM WKSHPS)》.2020,第424-429页.Meng Li 等.Graph Encryption forShortest Path Queries with k UnsortedNodes《.2022 IEEE International Conferenceon Trust, Security and Privacy inComputing and Communications (TrustCom)》.2022,第89-96页.
-
公开(公告)号:CN115834248A
公开(公告)日:2023-03-21
申请号:CN202310063509.X
申请日:2023-02-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据处理相关技术领域,提出了面向信息物理系统的攻击和异常数据流检测方法及装置,包括:获取信息物理系统中实时数据流并将所获取的数据流转换为数据对象集;对所述数据对象集进行预处理后输入至训练好的反向传播网络中,得到数据对象集所对应的数据标签;根据数据对象集所对应的数据标签判断当前数据是否被攻击或攻击类型,对可能存在的威胁进行快速检测。
-
公开(公告)号:CN119808896A
公开(公告)日:2025-04-11
申请号:CN202510296997.8
申请日:2025-03-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/098 , G06F21/62 , G06F18/2132 , G06F18/214
Abstract: 本发明属于隐私保护的技术领域,更具体地,涉及面向保隐私异构去中心化学习的正则约束自适应调整方法。所述方法包括:将每个客户端#imgabs0#的本地模型#imgabs1#划分为共享模型#imgabs2#和保留模型#imgabs3#,对共享模型#imgabs4#进行正则化约束;客户端#imgabs5#使用上一轮聚合后的共享模型#imgabs6#和本地保留模型#imgabs7#,基于本地数据集#imgabs8#进行梯度下降更新;通过KL散度对正则化参数#imgabs9#进行动态更新调整;对共享模型进行差分隐私保护,然后将加噪后的共享模型广播给邻居客户端;客户端i的邻居客户端接收加噪后的共享模型并进行聚合,以得到下一迭代轮次的本地模型。本发明在保护数据隐私的同时,减轻数据异质性和差分隐私噪声对模型性能的负面影响。
-
公开(公告)号:CN119293861A
公开(公告)日:2025-01-10
申请号:CN202411845784.8
申请日:2024-12-16
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/62 , G06N3/0464 , G06N3/098
Abstract: 本发明属于联邦学习的技术领域,更具体地,涉及面向异构联邦学习的自适应差分隐私保护方法。所述方法包括在模型的不同层次上引入自适应噪声。模型的各层次对整体学习效果的贡献存在差异,为了在加噪的同时尽可能减小对关键特征的破坏,本文基于模型层次的重要性程度对不同部分进行差异化加噪,即在较重要的层次上施加较少噪声,而在次要层次上施加更多噪声。本发明解决了传统的差分隐私联邦学习方法由于噪声的引入,通常会对模型的性能产生负面影响,尤其是降低模型的收敛速度和精度的问题。
-
公开(公告)号:CN119272205A
公开(公告)日:2025-01-07
申请号:CN202411783759.1
申请日:2024-12-06
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , H04L9/40 , G06F18/15 , G06F18/213 , G06F18/2431 , G06N3/0455 , G06N3/0442 , G06N3/084 , G06Q50/06
Abstract: 本发明属于网络安全和数据保护的技术领域,更具体地,涉及基于TGRU模型的虚假数据注入攻击检测与定位方法。所述方法首先通过预处理多种传感器的测量数据,输入到TGRU模型进行训练,结合Transformer的全局特征提取能力与GRU的时间序列处理能力进行数据分析。利用基于欧几里得距离的双重计算机制分析正常数据和攻击数据的分布,设定检测阈值。一旦检测到攻击,系统将当前时刻TGRU模型生成的预测数据与检测到的攻击数据进行整合,训练元模型以实现攻击位置的精确定位。最终,通过优化模型架构减少计算步骤,确保高效运行。本发明解决了现有技术在处理复杂网络环境中的局限性,尤其是在应对高维时序数据时精度不足且计算效率低的问题。
-
公开(公告)号:CN118378255B
公开(公告)日:2024-09-10
申请号:CN202410825770.3
申请日:2024-06-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据安全技术领域,更具体地,涉及一种差分隐私保护约束下抗投毒攻击的联邦学习方法、装置及计算机可读存储介质。包括在客户端定义差分隐私;客户端获取服务端全局模型后使用自身的训练数据集更新本地模型,计算差分隐私噪声并添加到各个客户端的本地模型中;将添加了差分隐私噪声的本地模型发送至服务端,选出恶意客户端;服务端为各个客户端分配权重,然后将各个客户端的本地模型进行聚合得到训练好的全局模型并发送至各个客户端;各个客户端获取训练好的全局模型,完成一次迭代,达到设置训练轮次之后,输出最终全局模型并结束训练。本发明解决了现有技术中投毒攻击防御方案尚无法在差分隐私保护下有效检测出恶意客户端。
-
公开(公告)号:CN117932125B
公开(公告)日:2024-06-14
申请号:CN202410331043.1
申请日:2024-03-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/903 , G06F21/62 , G06F21/60 , G06F16/901
Abstract: 本发明属于数据安全的技术领域,更具体地,涉及一种支持隐私保护的可验证空间关键字查询方法及装置。该方法包括:数据拥有者端加密其空间数据集,构建密文索引,并将空间数据集和密文索引上传云服务器端;查询用户端根据数据拥有者端提供的密钥信息和辅助参数生成搜索令牌并提交云服务器端;云服务器端根据搜索令牌检索密文索引,并向查询用户端返回相应的空间对象密文信息和验证信息;查询用户端基于密钥信息、辅助验证信息、空间对象密文信息和验证信息,先进行本地验证,再对验证通过的空间对象密文信息进行解密。本发明用于在用户给定的空间范围内返回其所期望的空间数据对象,在保证安全性的同时实现高效搜索,并支持对结果的验证。
-
公开(公告)号:CN118070929A
公开(公告)日:2024-05-24
申请号:CN202410465104.3
申请日:2024-04-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N20/20 , G06F18/2431
Abstract: 本发明属于分布式机器学习系统优化的技术领域,涉及一种分布式机器学习系统中梯度异构双重优化方法、装置、电子设备及存储介质。该方法包括:构建包含#imgabs0#个节点和单个参数服务器的分布式学习系统,节点为诚实节点和恶意节点;基于诚实节点从其局部数据集选取的数据样本,计算并修正数据样本的局部梯度,以迭代优化本地梯度差异;引入动量项,将修正后的局部梯度与上一迭代轮次的动量向量结合,再将得到的当前迭代轮次的动量向量归一化为单位动量向量发送给参数服务器,得到局部聚合结果;对局部聚合结果进行全局聚合,以迭代优化全局梯度差异。本发明解决了由于本地梯度差异和全局梯度差异而制约系统在面对恶意节点和攻击时的鲁棒性表现的问题。
-
公开(公告)号:CN117454381A
公开(公告)日:2024-01-26
申请号:CN202311800375.1
申请日:2023-12-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/214 , G06F21/55
Abstract: 本发明属于信息安全的技术领域,更具体地,涉及一种非独立同分布数据下面向联邦学习的渐进性攻击方法。所述方法服务器端随机初始化一个全局模型作为第一轮全局模型,下发到各个客户端,攻击者选用该全局模型作为攻击模型;所述客户端收到全局模型后在本地执行训练形成局部模型,并将局部模型上传到服务器端;所述服务器端将局部模型更新聚合,形成新一轮全局模型,继续下发至客户端;在每轮训练中,客户端使用接收到的全局模型更新其局部模型并在本地数据集上进行训练;结束训练。本发明解决了现有技术中攻击者为隐藏其攻击操作导致控制模型性能逐渐下降并导致数据非独立同分布联邦学习中的攻击检测变得更加困难的问题。
-
公开(公告)号:CN117349894A
公开(公告)日:2024-01-05
申请号:CN202311629347.8
申请日:2023-12-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/62 , G06F21/60 , G06F21/33 , G06N5/022 , G06N5/02 , G06F16/36 , G06F16/901 , G06F16/903 , H04L9/40 , H04L9/00 , H04L9/06 , H04L9/08
Abstract: 本发明属于保密通信的技术领域,更具体地,涉及一种基于填充字典加密的图结构最短路径查询方法。所述方法包括数据拥有者构造填充字典结构的密文图;数据拥有者向有查询需求的用户通过安全信道发送授权令牌;生成查询令牌,用户将查询令牌发送至云服务器端;云服务器在接收到密文图和查询令牌之后,进行最短距离查询;获取明文查询结果。本发明解决了现有技术中用户的数据存储在第三方服务器上,可能会面临数据泄露和安全漏洞的风险以及查询效率较低的问题。
-
-
-
-
-
-
-
-
-