-
公开(公告)号:CN113657232B
公开(公告)日:2024-09-27
申请号:CN202110911051.X
申请日:2021-08-10
Applicant: 大连理工大学
IPC: G06V10/25 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于图像信息处理技术领域,提供了一种基于风格内容解耦的跨域遥感图像目标检测方法。本发明的端到端训练的跨域遥感图像目标检测方法利用了自适应实例归一化的方式获得多域图像,并且进一步将解耦获得的内容特征编码送入目标检测网络来进行目标检测。本方法对于不同域的遥感图像有较好的泛化性,可以得到理想的目标检测结果。
-
公开(公告)号:CN116843588B
公开(公告)日:2024-02-06
申请号:CN202310732526.8
申请日:2023-06-20
Applicant: 大连理工大学
Abstract: 本发明属于图像信息处理技术领域,提出一种目标语义层级挖掘的红外与可见光图像融合方法。图像融合网络包括融合特征模块、语义特征模块、层级挖掘模块与图像重建模块;源图像对输入至图像融合网络后,融合特征模块提取源图像对的图像融合特征Fuj,语义特征模块提取源图像对的图像语义特征Fej;层级挖掘模块挖掘多个层级的目标语义特征并进行整合,多次重复特征提取与挖掘后,通过图像重建模块生成融合结果。相较于仅利用单一图像融合特征的融合方法,本发明通过不同层次的挖掘图像中目标语义并将其整合到图像融合网络中,有效地提升了图像融合网络中特征的多样性,从而可以获得更高质量的图像融合结果。
-
-
公开(公告)号:CN116758353A
公开(公告)日:2023-09-15
申请号:CN202310731995.8
申请日:2023-06-20
Applicant: 大连理工大学
IPC: G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/094
Abstract: 本发明属于图像信息处理技术领域,提出一种基于域特定信息滤除的遥感图像目标分类方法。从实例归一化分离域特定信息和域不变信息、图像重建去除域特定信息两个角度进行遥感图像风格信息的滤除。通过对抗性域特定信息鲁棒模块使用实例归一化使得每一个输入实例的数据趋向于标准正态分布,进而降低细微扰动带来的影响。通过数据扩充模拟遥感图像域特定信息的显著变化,并通过域不变信息滤波器利用域特定信息滤除后的特征来重建图像,从而降低域特定信息显著变化带来的影响。本发明方法有效解决了目前遥感目标识别方法存在对未知域表现差的这一问题,使遥感图像目标模型对不同域数据集均具有泛化性。
-
公开(公告)号:CN113887504B
公开(公告)日:2023-03-24
申请号:CN202111232231.1
申请日:2021-10-22
Applicant: 大连理工大学
IPC: G06V20/13 , G06V10/40 , G06V10/74 , G06V10/774 , G06V10/82 , G06N3/0895 , G06N3/09
Abstract: 本发明属于图像信息处理技术领域,针对提升遥感网络准确度和泛化性的问题,提供了一种强泛化性的遥感图像目标识别方法。使用特征提取主干与多个预测分支的结构。在对有监督的数据进行训练时,我们将不同预测分支的特征通过余弦相似度的方式进行分离增加多样性,在后续的训练过程中获取无监督图像的真值,使最终的预测准确度和泛化性均得到提升。本发明的遥感图像目标识别泛化性增强方法,利用了半监督的方法通过大量无标签数据的训练增强网络特征提取能力,目前存在的蒸馏方法不能有效解决训练网络泛化性低的问题,本发明的一致性轮次学习方法有效的解决了这个问题,本发明方法能够提升识别网络的准确度和泛化性。
-
公开(公告)号:CN113610045B
公开(公告)日:2023-01-06
申请号:CN202110961137.3
申请日:2021-08-20
Applicant: 大连理工大学
Abstract: 本发明属于图像信息处理技术领域,提供了一种深度特征集成学习的遥感图像目标识别泛化性方法。该方法适用于不同种类的输入源图像,均可以得到较好的预测结果。它在网络结构中使用多个子分支预测得到多个输出特征,并使用余弦相似度控制这些输出特征的多样性,实现模型的多样性;为了能够从所得的集成特征中进一步选择所需的特征,它使用一个自适应选择网络对特征进行筛选。本发明的方法充分利用遥感图像深度特征的不同表达,如色调,对比度,饱和度,图像质量/分辨率等,设计基于门控的自适应集成架构得到用于遥感图像目标识别的具有泛化性的网络模型。
-
-
-
-
-