基于言语行为理论的用户交互意图识别方法及系统

    公开(公告)号:CN107153672A

    公开(公告)日:2017-09-12

    申请号:CN201710171926.0

    申请日:2017-03-22

    Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。

    一种面向微博的疑似水军发现方法

    公开(公告)号:CN106940732A

    公开(公告)日:2017-07-11

    申请号:CN201710212983.9

    申请日:2017-04-01

    Abstract: 本发明涉及一种面向微博数据的疑似水军发现方法,属于计算机应用技术领域。本发明共分为以下六个步骤,分别为相关微博数据的采集;数据预处理;用户特征提取;构建训练集;训练水军检测模型;预测判别未标注数据。对比现有技术,本发明实现了数据的充分利用,方便快捷的进行群体发现而不用建立复杂的分类检测模型,从而降低了算法的复杂度,并且算法的模块性较高,可以投入大规模数据计算,具有较高的稳定性;本发明除了可以对单一用户进行水军检测,还可以对某一特定事件中的一批用户进行识别,该方法模块性极强,可以稳定适用于大规模数据计算框架下。

    基于分层图池化的多视角聚类方法及系统

    公开(公告)号:CN113255720A

    公开(公告)日:2021-08-13

    申请号:CN202110393842.8

    申请日:2021-04-13

    Abstract: 本发明公开了一种基于分层图池化的多视角聚类方法,包括以下步骤:将待处理数据划分成多视角数据集,然后将多视角数据集按各视角构建对应的图表示,得到对应的视图;采用分层图池化层迭代计算方法提取每个视图的聚类信息,每个视图的聚类信息包括对应该视图的粗化图和分配矩阵,该粗化图包括迭代后的邻接矩阵、特征矩阵、图拉普拉斯矩阵;采用多视角谱聚类融合方法融合所有视图的聚类信息,得到每一类特征向量所对应的类别。具有充分利用待处理数据本身的多视图特征,可以综合包含原各个视图的聚类信息。公开了一种基于分层图池化的多视角聚类系统,包括:图构建模块、聚类信息计算提取模块、多视角融合模块。本发明具有提升聚类效果的有益效果。

    一种基于热点事件的舆情知识图谱构建方法

    公开(公告)号:CN107633044B

    公开(公告)日:2021-08-06

    申请号:CN201710827984.4

    申请日:2017-09-14

    Abstract: 本发明公开了一种基于热点事件的舆情知识图谱构建方法,属于自然语言处理领域;首先实时获取微博文本,对每个微博文本进行处理,构建文本簇,计算每个文本簇所属的话题类别,按类别识别每个簇中的热点事件,统计每个热点事件的多维属性;识别参与热点事件讨论的重要人物和机构,并获取重要人物和机构的多维属性;最后构建事件、人物、机构的多维属性体系及关系类型,以事件、人物、机构为实体,事件、人物、机构之间的关系为关联,构建舆情知识图谱。本发明能够从多个维度对热点事件、人物、机构进行刻画,实现对热点事件、人物、机构的全方位解析;并根据实际需求,设置不同话题类别的权重,实现不同话题的舆情知识图谱构建。

    一种基于马尔可夫聚类的实体间关系消解方法

    公开(公告)号:CN105893481A

    公开(公告)日:2016-08-24

    申请号:CN201610187149.4

    申请日:2016-03-29

    Abstract: 本发明提供一种基于马尔可夫聚类的实体间关系消解方法,包括:计算K个实体中任意两个实体之间的语义相似度;根据实体间的语义相似度构造赋权图G;构造状态转移矩阵M;在状态转移矩阵M上执行马尔科夫聚类算法,得到多个关系簇;其中,每个簇代表一系列语义相近似的实体。本发明提供的基于马尔可夫聚类的实体间关系消解方法具有以下优点:提出了融合词法和语义的相似度计算方法,然后给出了基于马尔科夫图聚类的关系聚类方法。该方法与层次聚类方法相比,聚类纯度指标有了一定提高,还具有计算过程简单快速的优点。

Patent Agency Ranking