一种突发事件检测方法、装置、设备及存储介质

    公开(公告)号:CN111507110B

    公开(公告)日:2022-10-18

    申请号:CN201910092796.0

    申请日:2019-01-30

    Abstract: 本申请涉及一种突发事件检测方法、装置、设备及存储介质,该方法包括:获取待检测事件的文本数据;提取文本数据中的关键信息,关键信息包括:关键词;根据关键信息生成触发词关系链;在预设的关键词库与触发词关系图的对应关系中,将与关键信息中的关键词对应的触发词关系图确定为目标触发词关系图;计算触发词关系链和目标触发词关系图的匹配度;若匹配度大于预设匹配阈值,则将待检测事件确定为突发事件。该方法可以缓解现有技术中存在的突发事件检测的效率低的问题,达到了提高突发事件检测效率的技术效果。

    基于事件隐式要素与显式联系的事件预测方法和装置

    公开(公告)号:CN113761337A

    公开(公告)日:2021-12-07

    申请号:CN202011643504.7

    申请日:2020-12-31

    Abstract: 本发明提供一种基于事件隐式要素与显式联系的事件预测方法和装置,其中,方法包括:获取事件文本中的多个事件的事件要素;提取跨事件的事件要素之间的第一关系特征,所述第一关系特征用于表征跨事件的事件要素之间的语义联系特征;基于所述第一关系特征进行事件预测。在对事件进行预测时,加入跨事件的事件要素之间的第一关系特征,可以记录跨事件的事件要素之间的隐式联系,并且通过不同事件中的事件要素语义联系特征让不同的事件之间产生了联系,挖掘出了事件元组更深层次且更具有预测性的语义信息,不仅可以提升了事件预测的准确性,而且广泛适用于基于事件要素进行事件预测的方法中,通用性强。

    一种事理知识图谱构建方法及系统

    公开(公告)号:CN108052576B

    公开(公告)日:2021-04-23

    申请号:CN201711293661.8

    申请日:2017-12-08

    Abstract: 本发明涉及一种事理知识图谱构建方法及系统,该构建系统包括:宏观事件层构建模块、微观知识层构建模块、关系映射模块、本体层构建模块和事理知识图谱生成模块;所述宏观事件层构建模块包括:事件实体抽取单元、事件演化单元和因果关系抽取单元;所述微观知识层构建模块包括:微观实体抽取单元。本发明通过从结构化数据中获取事件实体和微观实体,分别构建宏观事件层和微观实体层,并抽取不同事件实体之间的因果关系映射到微观实体中,通过对微观实体层中微观实体的关系、类型和因果关系进行抽象和归纳,由此判断事件形成突发性群体响应的本质原因,对突发事件进行预警预测。

    基于触发词语态学习的金融文本事件抽取方法及装置

    公开(公告)号:CN113312916A

    公开(公告)日:2021-08-27

    申请号:CN202110589745.6

    申请日:2021-05-28

    Abstract: 本发明通过神经网络领域的方法,实现了基于触发词语态学习的金融文本事件抽取方法及装置。方法包括三个步骤:金融领域文本预训练、事件分类和基于触发词语态学习的金融文本事件要素抽取;金融领域文本预训练步骤的实现结合金融知识图谱构建BERT预训练模型,以输入词序列作为模型输入,结合神经网络方法,在已有的金融文本训练集和金融知识图谱数据上进行再训练,得到适合下游事件分类和事件抽取的词表征和实体表征,而后通过词表征做多标签多分类任务得到事件检测结果,最后每一个输入词对应的词表征作为多标签分类任务的表征向量进行计算得到输出结果,从而形成一个能够自动精准抽取金融文本事件的方法。

    一种基于对话状态追踪技术的事件抽取方法

    公开(公告)号:CN113312464A

    公开(公告)日:2021-08-27

    申请号:CN202110589755.X

    申请日:2021-05-28

    Abstract: 本发明通过人工智能领域的方法,实现了一种基于对话状态追踪技术的事件抽取方法。方法整体由事件分类、序列问题生成模型和论元抽取模型三部分组成;事件分类检测输入文本是否是事件,如果文本不包含事件,则输出NULL,否则分类文本所属的事件类型;序列问题生成模型根据事件类型和已经预测的置信度高的论元结果自动生成问题;论元抽取模型将所述序列问题生成模型生成的问题和输入文本作为输入来预测论元位置,然后采用标签对齐机制将预测的论元中置信度高的论元加入训练集中。这一方法通过三部分模型,能对所有参数的预测结果和高置信度结果进行反馈;提取两个任务之间的共同信息和模式,并利用所学习到的语法和语义知识标记;并充分利用论元之间的相关性。

    一种低资源场景下的文本生成方法、装置及系统

    公开(公告)号:CN114611472A

    公开(公告)日:2022-06-10

    申请号:CN202210308980.6

    申请日:2022-03-28

    Abstract: 本发明提出了一种低资源场景下的文本生成方法、装置与系统,包括:步骤一,为有监督网络输入少量的有监督训练样本,同时为无监督网络输入大量的无监督训练样本,并对无监督文档复制两份,再分别对其嵌入向量进行dropout,得到两组嵌入向量;步骤二,为大型预训练文本生成网络并行集成适配器的小型神经网络,组成基于适配器微调的预训练学习组件;步骤三,对有监督网络与无监督网络采用基于适配器微调预训练学习组件,对无监督网络进行一致性学习,并结合有监督网络的有监督学习进行文本生成模型的训练与优化,并利用优化好的模型进行预测。本发明方案减少了对大量的人工标注数据的依赖,并使得模型训练过程训练开销也大幅降低。

    基于触发词语态学习的金融文本事件抽取方法

    公开(公告)号:CN113312916B

    公开(公告)日:2022-05-27

    申请号:CN202110589745.6

    申请日:2021-05-28

    Abstract: 本发明通过神经网络领域的方法,实现了基于触发词语态学习的金融文本事件抽取方法。方法包括三个步骤:金融领域文本预训练、事件分类和基于触发词语态学习的金融文本事件要素抽取;金融领域文本预训练步骤的实现结合金融知识图谱构建BERT预训练模型,以输入词序列作为模型输入,结合神经网络方法,在已有的金融文本训练集和金融知识图谱数据上进行再训练,得到适合下游事件分类和事件抽取的词表征和实体表征,而后通过词表征做多标签多分类任务得到事件检测结果,最后每一个输入词对应的词表征作为多标签分类任务的表征向量进行计算得到输出结果,从而形成一个能够自动精准抽取金融文本事件的方法。

    一种多任务学习的商品评论标签自动生成方法、装置及系统

    公开(公告)号:CN111325571A

    公开(公告)日:2020-06-23

    申请号:CN201911396009.8

    申请日:2019-12-30

    Abstract: 一种多任务学习的商品评论标签自动生成方法、装置与系统,包括:步骤一:构建训练数据集合与数据预处理;步骤二:实现基于Transformer encoder的评论源文本特征编码器;步骤三:提取代表评论源文本整体内容的[cls]标签对于的隐状态向量用于情感分类任务;步骤四:基于Transformer decoder实现多任务的评论摘要生成器模型;步骤五:训练数据并根据联合loss函数进行训练调优,并实现模型封装与装置的接口实现;本发明避免采用抽取式的方式去生成评论标签,即不需要依赖句法结构的人工的规则集不能适合多个领域场景的缺点,又能保证标签生成的高效性,即只需要输入源文本,本发明装置能够自动产生标签。

    一种话题标签自动生成方法、装置及系统

    公开(公告)号:CN111191023A

    公开(公告)日:2020-05-22

    申请号:CN201911395888.2

    申请日:2019-12-30

    Abstract: 一种话题标签自动生成方法、装置与系统,包括:步骤一:构建训练数据集合与数据预处理;步骤二:实现基于内容片段的内容选择机制的Transformer encoder特征编码器;步骤三:Transformer decoder的话题摘要生成器模型;步骤四:训练数据并根据交叉验证调优,并实现模型封装与装置的接口实现;本发明通过文本摘要生成技术实现话题标签的自动生成,提出了一种话题标签生成的新场景,本发明提出内容选择机制的Transformer编码并抽取重要的源文本片段,输入解码器用于文本生成,这种设计即捕捉了有效的核心语义片段,又减少了模型训练的开销。

Patent Agency Ranking