一种碳微米笼封装碳纳米管吸波材料的制备方法

    公开(公告)号:CN114835106A

    公开(公告)日:2022-08-02

    申请号:CN202210509179.8

    申请日:2022-05-11

    Abstract: 一种碳微米笼封装碳纳米管吸波材料的制备方法,本发明涉及电磁波吸收材料技术领域,具体涉及一种碳微米笼封装碳纳米管吸波材料的制备方法。本发明要解决现有方法制备的碳纳米管基复合材料易团聚及阻抗不匹配的技术问题。方法:本发明在ZIF‑67@二氧化硅立方体的外表面包覆酚醛树脂,通过碳化和刻蚀,得到了碳纳米笼封装碳纳米管复合材料。本方法得到的碳纳米管基复合材料除具有良好的化学均一性外,由于碳纳米管被碳微米笼封装起来有效抑制了碳纳米管表面的趋肤电流,从而显著改善了阻抗匹配。本发明制备的材料用于制作轻质高效的电磁波吸收涂层。

    一种CoO/h-TiO2纳米异质结构的制备方法

    公开(公告)号:CN114505076A

    公开(公告)日:2022-05-17

    申请号:CN202210210249.X

    申请日:2022-03-03

    Abstract: 一种CoO/h‑TiO2纳米异质结构的制备方法,本发明涉及半导体纳米异质结构制备方法领域。本发明要解决现有h‑TiO2基光催化剂太阳能转化效率低、过于依赖贵金属提升性能的技术问题。方法:采用水热法及煅烧法制备出氢化二氧化钛纳米片并以此为基底,然后以乙酸钴为二价钴源,在碱性条件下通过水热法在其表面负载钴基化合物中间体,最后在氮气条件下进行煅烧,得到浅绿色的CoO/h‑TiO2纳米异质结构催化剂,并可用于光解水制氢反应。以h‑TiO2为基底,可以有效的保护Co2+在水热过程中不被氧化成Co3+,以TiO2为基底,Co2+则会被氧化成Co3+,本制备过程也为合成低价的钴氧化物提供了新思路。本发明制备的CoO/h‑TiO2纳米异质结构具有优异的光催化制氢性能,可以用于催化领域。

    一种泡沫镍负载铂纳米粒子钴盐全解水电催化材料及其制备方法

    公开(公告)号:CN113235109B

    公开(公告)日:2022-03-08

    申请号:CN202110505356.0

    申请日:2021-05-10

    Abstract: 一种泡沫镍负载铂纳米粒子钴盐全解水电催化材料及其制备方法,本发明涉及电催化材料领域。本发明要解决现有电催化反应,采用过渡金属催化剂耗电大,贵金属催化剂价格昂贵的技术问题。本发明采用熔融硝酸钴浸泡制备碱式硝酸钴,再浸入氯铂酸钾溶液,采用紫外杀菌灯光照,在三维基底泡沫镍上生长了负载有纳米铂的阵列状钴盐。本发明制备的电催化材料将贵金属与过渡金属结合,节约了成本,并能保证电催化全解水性能。另外本发明虽然是两步法,但并不繁琐,操作简单。本发明用于制备电催化材料。

    一种三维泡沫铜负载碱式钒酸钴功能材料电解水催化剂的制备方法

    公开(公告)号:CN113684487A

    公开(公告)日:2021-11-23

    申请号:CN202111004569.1

    申请日:2021-08-30

    Abstract: 一种三维泡沫铜负载碱式钒酸钴功能材料电解水催化剂的制备方法,本发明涉及电催化材料的制备方法技术领域。本发明要解决现有催化剂的催化活性低,并且贵金属成本高的技术问题。方法:一、制备前驱体纳米球;二、清洗,烘干;三、在载体三维泡沫铜上合成碱式钒酸钴空心纳米球。本发明制备得到的三维泡沫铜负载碱式钒酸钴电极材料在HER和OER方面均表现出优越的催化性能,作为双功能催化剂时,仍然具有优异的电化学性能和稳定性,在电催化分解水电极材料技术领域将具有广泛的应用前景。本发明方法制备的三维泡沫铜负载碱式钒酸钴电解水催化剂用于电催化材料技术领域,改善能源与环境问题。

    一种负载在碳布基底上的钴镍双金属偏磷酸盐纳米阵列的制备方法

    公开(公告)号:CN110124704B

    公开(公告)日:2021-10-01

    申请号:CN201910530894.8

    申请日:2019-06-19

    Abstract: 一种负载在碳布基底上的钴镍双金属偏磷酸盐纳米阵列的制备方法,本发明涉及双金属偏磷酸盐修饰碳纳米复合材料的制备方法领域。本发明要解决现有阳极催化剂稳定性及催化活性低,并且贵金属及其氧化物成本高的技术问题。本方法:首先通过共沉淀法将Co基双金属MOFs均匀生长在导电碳布上,得到CoNi(n)‑ZIF纳米阵列,然后对其进行低温固相磷酸化反应,得到Co2‑xNixP4O12‑C纳米阵列催化剂。本发明催化剂为非贵金属催化剂,降低了反应成本,对氧气的析出有很好的催化活性。本发明制备的材料用于电解水析氧反应中。

    一种抑制闪络电压降低的电绝缘材料的制备方法

    公开(公告)号:CN110105712A

    公开(公告)日:2019-08-09

    申请号:CN201910441400.9

    申请日:2019-05-24

    Abstract: 一种抑制闪络电压降低的电绝缘材料的制备方法,本发明涉及电绝缘材料制备方法领域。本发明要解决现有电绝缘材料表面电阻率高,表面电气强度低的技术问题。本方法首先预处理TiO2纳米颗粒、环氧树脂及固化剂,再将环氧树脂与固化剂混合后加入稀释剂,机械搅拌,加入TiO2搅拌,将混合液浇入涂覆有一层脱模剂的、预热好的模具中,保温,再抽真空,固化,即可得到电绝缘材料。本发明以双酚A型环氧树脂作为基体,通过半导体TiO2纳米粒子改性,获得了表面电阻率低,表面电气强度高的新型的TiO2改性环氧树脂复合物电绝缘材料。本发明制备的电绝缘材料应用于超高压或特高压产品中。

    一种非同步收缩诱导制备中空核壳复合材料的方法

    公开(公告)号:CN107488437A

    公开(公告)日:2017-12-19

    申请号:CN201710690316.1

    申请日:2017-08-14

    Abstract: 一种非同步收缩诱导制备中空核壳复合材料的方法,将9.0mL吡咯分散到480mL蒸馏水中搅拌均匀后,再将0.8g FeCl2·4H2O溶于溶液中,搅拌的条件下加入40mL氧化剂H2O2,反应12小时后可以得到PPy微球;将0.4g PPy微粒分散到400mL无水乙醇、100mL水和10mL氨水的混合溶液中,超声30分钟后,逐滴滴入1mL正硅酸乙酯,室温反应12小时后用乙醇清洗数次,即可得到PPy@SiO2微球;将得到的PPy@SiO2微球在管式炉内氮气条件下700℃煅烧4小时得到C@C@SiO2,再将得到的C@C@SiO2微球0.8g分散到150mL浓度为1mol·L-1的KOH溶液内,45℃条件下搅拌24小时;经过KOH刻蚀后用蒸馏水清洗数次,即可得到中空核壳复合材料C@C微球。

    一种碳包覆Fe3O4微球吸波材料的制备方法

    公开(公告)号:CN103318973B

    公开(公告)日:2015-02-18

    申请号:CN201310259969.6

    申请日:2013-06-26

    Abstract: 一种碳包覆Fe3O4微球吸波材料的制备方法,涉及一种吸波材料的制备方法。是要解决目前Fe3O4介电常数较低,难以实现阻抗匹配,而导致电磁波吸收性差的问题。方法:一、制备Fe3O4微球;二、制备酚醛树脂包覆Fe3O4微球;三、制备碳包覆Fe3O4微球。本发明制备的碳与Fe3O4核壳结构吸波材料的介电常数实部大于18,介电常数虚部在低频主要在0左右,有利于实现阻抗匹配,增强吸波性能;本发明制备碳与Fe3O4核壳结构复合材料可用于电磁波吸收领域。

    一种贵金属纳米粒子的制备方法

    公开(公告)号:CN103042231B

    公开(公告)日:2014-09-03

    申请号:CN201310010907.1

    申请日:2013-01-11

    Abstract: 一种贵金属纳米粒子的制备方法,本发明涉及纳米粒子的制备方法。本发明是要解决目前制备贵金属纳米粒子的方法制备的纳米粒子表面吸附一层有机分子,影响纳米粒子的功能性,并且纳米粒子的粒径不可控制的问题。方法:一、制备氧化亚铜纳米粒子;二、制备贵金属纳米粒子。本发明利用氧化亚铜作为还原剂,可以制备表面清洁的贵金属纳米粒子,无需任何其它的外部条件和工艺,并且制备出的纳米粒子粒径均匀,通过控制氧化亚铜纳米粒子的粒径可以到达控制贵金属纳米粒子粒径的目的,本发明制备的纳米粒子具有良好的表面增强拉曼效应,电催化电流密度大,电化学活性面积保持率高。本发明制备的贵金属纳米粒子用于电催化、分子检测领域。

    一种用于吸附铀的磁性NiFe-LDH复合材料的制备方法

    公开(公告)号:CN114849675B

    公开(公告)日:2024-08-06

    申请号:CN202210542095.4

    申请日:2022-05-18

    Abstract: 一种用于吸附铀的磁性NiFe‑LDH复合材料的制备方法,本发明涉及核工业废水净化处理领域,具体涉及一种可用于吸附核素铀的磁性水滑石类复合材料制备方法领域。本发明要解决现有LDHs材料对铀吸附效果差的技术问题。方法:以铁盐和无水乙酸钠为原材料,乙二醇作溶剂,添加分散剂后利用溶剂热的方法制备得到粉末A;再以粉末A及均苯三甲酸为原料,以水作溶剂,利用水热法制备得到粉末B;再以粉末B及二价金属盐、尿素为原料,以水作溶剂,利用水热法制备得到获得产物。本发明方法制备过程简单、成本低廉,制备出的产物有着均匀、规整的微观形貌,并且对铀的吸附性能优异。本发明制备的复合材料用于去除核工业废水中的铀。

Patent Agency Ranking