-
公开(公告)号:CN116664677B
公开(公告)日:2024-06-14
申请号:CN202310599847.5
申请日:2023-05-24
Applicant: 南通大学
IPC: G06T7/73 , G06T3/4076 , G06N3/0464
Abstract: 本发明公开了一种基于超分辨率重建的视线估计方法,包括:使用摄像头获取人脸图像;构建超分辨率重建模块、视线估计模块,首先对超分辨率重建模块进行预训练,之后对网络整体进行训练,输入人脸图像经过超分辨率重建模块,对低分辨率人脸图像恢复细节和清晰度,以提高视线估计精度,经过视线估计模块,其中使用ResNet50提取全局特征,提高特征表达能力,通过空间权重机制,增大视线相关区域的权重,从而进行准确的视线估计;本发明所设计的方法具有更好的学习能力、性能和泛化能力。经过实验验证,本方法能够有效提高低分辨率场景下视线估计的精度。
-
公开(公告)号:CN117315536B
公开(公告)日:2024-06-04
申请号:CN202311240937.1
申请日:2023-09-25
Applicant: 南通大学
Abstract: 本发明公开了一种在线学习专注度监测方法及系统,首先构建数据采集模块、特征提取模块,然后计算眼睛纵横比、嘴部纵横比、头部姿态欧拉角、并构建视线估计模型,然后构建注意力检测模块,通过输入在线学习者的视频,获得眼睛纵横比、嘴部纵横比、头部姿态欧拉角、眼睛视线方向,然后应用注意力检测模块,设置注意力检测模块阈值,大于等于阈值判断为注意力分散,小于阈值为注意力集中;本发明仅需要带摄像头的电脑,不需要佩戴其他额外的仪器,就可以判断在线学习者注意力是否集中,学生常用的笔记本电脑即可满足本发明的环境要求,本发明具有开销较小、较为便利、较强的鲁棒性、较好的精准度等优点。
-
公开(公告)号:CN117612201B
公开(公告)日:2024-05-28
申请号:CN202311371401.3
申请日:2023-10-20
Applicant: 南通大学
IPC: G06V40/10 , G06V10/82 , G06V10/74 , G06N3/0475 , G06N3/0464 , G06N3/094
Abstract: 本发明公开了一种基于特征压缩的单样本行人重识别方法,包括:首先将行人重识别的标准数据集中的已标签图片进行对抗性生成图片操作;然后,将生成的图片以及未标签图片放入单样本行人重识别网络中,获得距离矩阵,选取得分最高的一定数量的图片,并标注伪标签;其次,选取行人图像,进入网络训练,特别地,对图片进行特征压缩,联合损失函数,训练出性能良好的单样本识别网络;最后,完成对目标行人的识别。本发明提出基于特征压缩的单样本行人重识别方法,选择逐步地添加未标注图像到模型中,利用对抗性生成图像避免过拟合,并利用特征压缩减小图片带来的噪声影响,从而提高模型识别的准确率。
-
-