一种柔性织物冲击测试系统及纱线应变能计算方法

    公开(公告)号:CN113702215A

    公开(公告)日:2021-11-26

    申请号:CN202111056452.8

    申请日:2021-09-09

    Abstract: 本发明提供一种柔性织物冲击测试系统及纱线应变能计算方法,采用印证胶泥完整捕捉柔性织物冲击极限变形状态,应用光学全场测量胶泥冲击坑三维离面位移场,并根据冲击坑三维离面位移场信息分段提取柔性织物主纱及辅纱冲击形貌曲线,插值冲击变形跨度得到冲击坑经纬纱方向变形衰减趋势。根据冲击形貌曲线输出主纱冲击应变,以织物冲击变形衰减趋势插值得到所有辅纱冲击应变情况,则可根据纱线本构关系及冲击变形衰减趋势计算柔性织物所有纱线应变能。本发明能够对柔性织物整体的冲击变形进行综合分析,从而对柔性防护装备的冲击吸能水平及防护性能进行综合深入的评测。

    一种电聚合制备自支撑ILs@CMP薄膜用于提高CO2/CH4分离性能的方法

    公开(公告)号:CN112755733A

    公开(公告)日:2021-05-07

    申请号:CN202011401566.7

    申请日:2020-12-04

    Inventor: 冯霄 王博 张蒙茜

    Abstract: 本发明涉及一种电聚合制备自支撑ILs@CMP薄膜用于提高CO2/CH4分离性能的方法,属于气体膜分离技术领域;所述方法为利用电聚合成膜的方法将离子液体(ILs)原位封装在共轭微孔聚合物薄膜中来克服支撑离子液体膜长循环稳定性差和聚离子液体膜气体渗透性低等问题;通过将离子液体限域在共轭微孔聚合物(CMP)的孔道内,提升了膜材料的长循环稳定性,保证在长时间工作条件下离子液体不会由于气流量大而溢出;同时通过引入对CO2分子具有较强亲和能力的离子液体显著提升了CO2在膜中的扩散系数和渗透通量,提高了CO2/CH4混合气体的分离性能。

    一种二维COFs材料向三维COFs材料转变的方法

    公开(公告)号:CN112679744A

    公开(公告)日:2021-04-20

    申请号:CN202011406208.5

    申请日:2020-12-04

    Inventor: 冯霄 王博 朱宇豪

    Abstract: 本发明的一种二维COFs材料向三维COFs材料转变的方法,通过将含有联二炔官能团的AA正向堆积的二维COFs装载在瓷舟中,放入管式炉在惰气气流下加热反应得到三维的宽吸收COFs‑P,本发明技术中的合成方法能够向多种拓扑结构的晶态二维COF中引入联二炔官能团,合成方法简单,产率高,且能够利用简单的加热方法实现高达100%转化率的二维COFs向三维COFs的转变。转变后的三维COFs能够维持晶态多孔的结构,且可见光、近红外区的吸收有明显的提升,光热转换能力有所提升。本发明能够为二维COFs向三维COFs的转变和拓宽COFs在可见光近红外的吸收提供方法;为光敏材料提供新的设计、合成思路及可供选择的材料。

    一种过渡金属双原子催化剂、制备方法及其应用

    公开(公告)号:CN115458758B

    公开(公告)日:2025-05-09

    申请号:CN202211134495.8

    申请日:2022-09-19

    Abstract: 本发明涉及一种过渡金属双原子催化剂、制备方法及其应用,属于电化学催化技术领域。所述催化剂以氮掺杂碳为载体,过渡金属M1和M2组成双金属位点,M1和M2为锰、铁、钴、镍、铜和锌中的任意两种,金属双原子位点的构型为M1M2N5O,M1和M2在平面方向与5个氮原子配位,其中有2个氮原子被M1和M2共用,M1和M2之间形成金属键,M1或M2与1个氧原子配位。将双配体MOFs浸渍在含有两种活性金属的溶剂中,经一步热解制备得到。所述催化剂用作ORR催化剂,能够发挥出优越的电化学性能和稳定性能。

    一种Zr基金属有机骨架UiO-66的制备方法及成型工艺

    公开(公告)号:CN115819832A

    公开(公告)日:2023-03-21

    申请号:CN202310114555.8

    申请日:2023-02-15

    Abstract: 本发明涉及金属有机骨架材料技术领域,尤其涉及一种Zr基金属有机骨架UiO‑66的制备方法及成型工艺,本发明通过将多维调节剂加入到金属有机骨架材料合成的前驱体中,在氮氮二甲基甲酰胺溶液中均匀混合,通过溶剂热法,得到了具有连续可调控缺陷结构的金属有机骨架材料。再将具有连续可调控缺陷结构的金属有机骨架材料与海藻酸钠悬浊液滴加至钙离子溶液中,交联造粒,制成可填柱、易回收再生的MOF海藻酸钠微球。本发明将缺席金属有机骨架材料造粒成型,能够有效对水体中的负电低浓度高危险新兴污染物实现高效特异性吸附,且循环性好,易再生,稳定性强。

Patent Agency Ranking