-
公开(公告)号:CN112363844A
公开(公告)日:2021-02-12
申请号:CN202110037236.2
申请日:2021-01-12
Applicant: 之江实验室
Abstract: 本发明公开了一种面向图像处理的卷积神经网络垂直分割方法,属于深度学习以及分布式计算领域。该方法首先将连续卷积层最后一层的输入特征图分割为连续的子特征图,再根据子特征图,并依据卷积计算操作,反向逐层计算上一层对应的子特征图,直至第一层,参考第一层的子特征图,对第一层的输入特征图进行分割,将第一层分割后的子特征图分配给多个计算节点。最后,依据单链路连续卷积层的参数和超参数,实施无精度损失的分布式协同推理,并在所有推理结果生成后进行推理结果的汇总,生成最终的输出特征图。相比于过往方法,本发明的方法具有大幅度降低卷积神经网络推理时延并且没有精度损失的特点。
-
公开(公告)号:CN112297014A
公开(公告)日:2021-02-02
申请号:CN202011633386.1
申请日:2020-12-31
Applicant: 之江实验室
IPC: B25J9/16
Abstract: 本发明提供了面向机器人的云边端架构下的深度学习模型分割方法,属于深度学习以及分布式计算领域。该方法首先将深度学习模型建模为一个有向无环图,有向无环图的节点代表深度学习模型层,节点之间的边代表深度学习模型层间的数据传输。其次,根据模型层分别在云边端上的处理时间为节点赋值,根据模型层间数据分别在云边、边端、云端之间的传输时间为节点之间的边赋值。进而,采用一个有向无环图最长距离算法对图中的节点进行分层,并逐层处理节点。对于一层中的每个节点,根据节点的输入边权重和节点权重,采用启发式策略,进行动态分割,并将分割后的深度学习模型分配给云边端计算设备,从而实现无精度损失的云边端分布式协同推理。
-