-
公开(公告)号:CN115880643A
公开(公告)日:2023-03-31
申请号:CN202310016375.6
申请日:2023-01-06
Applicant: 之江实验室
Abstract: 本申请涉及人工智能技术领域,尤其是涉及一种基于目标检测算法的社交距离监测方法和装置,该方法包括:步骤一,获取监控设备的拍摄参数,以及监控视频中的实时视频流,并对视频流进行抽帧操作,获取到图像样本;步骤二,采用目标检测算法对图像样本进行行人运动目标物检测,后对检测到的行人运动目标物进行基于中心点的标记;步骤三,采用图像类比算法计算行人间距;步骤四,设定行人间距阈值,对于小于行人间距阈值的行人间距,对其对应的行人标记做警示处理。本发明对于固定监控场景下进行监控图像处理,并对行人间距进行实时计算,并做出警示标识,大大简化了计算逻辑,提升计算效率,增强距离精度计算,使整个社交距离的监控更加稳定流畅。
-
公开(公告)号:CN115311608A
公开(公告)日:2022-11-08
申请号:CN202211238639.4
申请日:2022-10-11
Applicant: 之江实验室
Abstract: 本发明公开一种多任务多目标关联追踪的方法及装置,该方法包括:步骤一,通过系统后台加载视频流地址或采用摄像头实时采集场景的视频流数据,并对视频进行编解码、抽帧、预处理操作;步骤二,利用目标检测模型对视频的图像数据进行实时推理,获取场景中人员和目标物体的检测结果数据;步骤三,通过人员目标追踪方法,对人员检测结果进行跟踪,获取人员进入场景和离开场景的时间,确定检测单位时间段;步骤四,判断人员停留在场景的时间段内,是否检测到目标物体,如果未检测到目标物体,将返回报警信息给平台端。本发明实现了在多人员和多目标的复杂场景,使用人工智能的方式进行智能检测,减少了人为因素的干扰,并且节约了人工成本。
-
公开(公告)号:CN112486630A
公开(公告)日:2021-03-12
申请号:CN202011375644.0
申请日:2020-11-30
Applicant: 之江实验室 , 北京一流科技有限公司
Abstract: 本发明公开了一种分布式训练部署系统。所述系统包括:从容器创建组件,基于用户输入的分布式任务创建申请包含的资源清单创建从容器集,并确认所创建的从容器处于可备用状态;主容器创建组件,基于用户输入的资源清单创建主容器,并确认所创建的主容器处于可备用状态;容器IP获取组件,获取所创建的主容器和从容器的IP,并基于所获取的IP创建JS对象简谱文件,并将该JS对象简谱文件写入所有主容器和从容器的指定位置;以及免密认证组件,通过对属于同一分布式任务的主容器和从容器配置安全密钥和认证信息,建立主容器和从容器之间的网络通讯的SSH免密认证。
-
公开(公告)号:CN116451808B
公开(公告)日:2024-02-13
申请号:CN202310451948.8
申请日:2023-04-23
IPC: G06N20/00 , G06V10/40 , G06F40/226 , G06F40/194
Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质及电子设备,获取图文对和翻译文本对,将图文对中的描述文本和翻译文本对包含的两种语言文本输入到预设的视觉语言模型中的文本特征提取层中,以通过文本特征提取层得到描述文本和两种语言文本的文本特征,并将图文对中的图像输入到视觉语言模型中的图像特征提取层中,以通过图像特征提取层得到图像的图像特征。根据图文对中图像的图像特征与描述文本的文本特征,以及翻译文本对中包含的两种语言文本的文本特征,确定目标损失;根据目标损失,对视觉语言模型进行训练。
-
公开(公告)号:CN117351946A
公开(公告)日:2024-01-05
申请号:CN202311413996.4
申请日:2023-10-27
Applicant: 之江实验室
IPC: G10L15/06 , G10L15/183 , G10L15/26 , G10L19/04
Abstract: 本说明书公开了一种语音识别方法、装置、存储介质及电子设备。在本说明书提供的语音识别方法中,获取样本文本;将所述样本文本输入待训练的双向语言模型,所述双向语言模型至少包括前向预测子网、后向预测子网、融合子网;通过所述前向预测子网根据所述样本文本得到前向预测结果,并通过所述后向预测子网根据所述样本文本得到后向预测结果;通过所述融合子网对所述前向预测结果和所述后向预测结果进行融合,得到双向预测结果;根据所述双向预测结果和所述样本文本之间的差异,对所述双向语言模型进行训练;采用所述双向语言模型对语音识别模型进行知识迁移;采用知识迁移后的语音识别模型进行语音识别。
-
-
公开(公告)号:CN115760670A
公开(公告)日:2023-03-07
申请号:CN202310023010.6
申请日:2023-01-06
IPC: G06T5/50 , G06T3/40 , G06N3/0464 , G06N3/0455 , G06N3/084 , G06N3/088
Abstract: 本发明公开了基于网络隐式先验的无监督高光谱融合方法及装置,获取低分辨率高光谱和高分辨率多光谱图像;采用噪声对图像进行扰动;将噪声扰动后的图像输入至编码器‑解码器体系结构,进行多级特征学习,生成高分辨率高光谱图像的模糊估计;对模糊估计分别进行空间和光谱下采样;基于低分辨率高光谱图像与空间下采样的结果,高分辨率多光谱图像与光谱下采样的结果,计算退化模型的损失函数,反向传播退化模型的优化参数给编码器‑解码器体系结构;重复执行上述过程,直至生成高分辨率高光谱图像的模糊估计达到循环终止条件。本发明利用两个并行的特殊卷积块分别模拟空间和光谱下采样,形成一个闭环,实现了无训练样本条件下的无监督学习。
-
公开(公告)号:CN115424109A
公开(公告)日:2022-12-02
申请号:CN202210987590.6
申请日:2022-08-17
Abstract: 本发明涉及图像处理领域,具体涉及一种可形变实例级图像翻译方法,其解决了现有技术中,域之间差距过大而导致的实例难以形变、实例无法和掩码信息保持一致的问题。其将前景的边缘信息、背景掩码信息和目标域标签信息的特征编码进行融合,获得混合掩码;然后,将背景特征和混合掩码,输入生成器,生成器的解码网络将输入的背景特征进行解码,同时从混合掩码提取附加信息,并将提取的附加信息作用于归一化后的解码输出上,通过附加信息对归一化后的解码输出进行仿射变换,从而获得了包括对应目标域掩码的前景信息和指示前景位置的位置信息的融合信息;最终,利用位置信息将生成的前景信息和源域背景图像进行融合,输出保留源域背景的目标域图片。
-
公开(公告)号:CN115033594B
公开(公告)日:2022-11-18
申请号:CN202210953656.X
申请日:2022-08-10
Applicant: 之江实验室
IPC: G06F16/242 , G06F16/2453 , G06F40/216 , G06F40/289
Abstract: 本发明提供了一种给出置信度的垂直领域检索方法和装置,方法包括在初次启动检索引擎时,生成用来将预存信息生成查询过程中所需要的第一词权重表、惩罚词权重表;对待查语句集进行处理,生成待查语句的满匹配得分表和倒排索引表;用户输入查询语句,求得该查询语句与待查语句集的匹配置信度并进行降序排列。本发明充分考虑未涵盖在特定语料库中的词汇,使用协调因子重构其词权重,并设计合理的计算公式给出令人信服的匹配置信度,从而支撑下游任务的顺利进行。
-
公开(公告)号:CN113191385A
公开(公告)日:2021-07-30
申请号:CN202110318366.3
申请日:2021-03-25
Applicant: 之江实验室
Abstract: 本发明公开了一种基于预训练标注数据不可知的图像分类自动标注方法,包括如下步骤:S1,获取待标注图像,收集预训练图像分类模型;S2,将预训练图像分类模型拆分成特征提取模型与标签预测模型,并初始化,固定标签预测模型参数,不参与后续迁移训练;S3,约束特征提取模型,使自动标注模型的输出具体类别确定,整体分布离散;S4,对特征提取模型输出特征进行聚类;S5,筛选出大小超过阈值的聚类簇,所对应的类别组成为待标注图像标签空间;S6,给所有待标注图像打上伪标签;S7,重新聚类并分配伪标签,对特征提取模型进行有监督训练;S8,迭代S3至S7;S9,使用迁移后的自动标注模型对待标注图像进行推理,得到标注结果。
-
-
-
-
-
-
-
-
-