-
公开(公告)号:CN107275700A
公开(公告)日:2017-10-20
申请号:CN201610214115.X
申请日:2016-04-07
Applicant: 中国科学院过程工程研究所
IPC: H01M10/54
Abstract: 本发明提供一种基于湿式破碎的废旧锂离子电池回收方法,所述方法包括如下步骤:废旧锂离子电池进行放电处理;对放电后的废旧锂离子电池进行湿式破碎,所述湿式破碎使用的溶剂为有机溶剂;对湿式破碎后得到的固液混合物进行固液分离,从液相中分离回收有机溶剂,将该有机溶剂循环利用;从回收有机溶剂后的残余液相中分离得到电解液和粘结剂;从固液分离后的固相中分离得到有效组分铝、铁、铜和正极粉。本发明方法简化了在电池处理过程的复杂的预选过程,一次性高效处理废旧锂离子电池,提高了回收效率,具有成本低、高效、无二次污染等特点。
-
公开(公告)号:CN104868190B
公开(公告)日:2017-09-12
申请号:CN201510242788.1
申请日:2015-05-13
Applicant: 中国科学院过程工程研究所
IPC: H01M10/54
CPC classification number: Y02W30/84
Abstract: 本发明提供了一种锂离子电池正极废料中金属的浸出及回收方法。所述浸出方法为:将锂离子电池正极废料与含有还原剂的有机酸溶液进行反应,反应后进行固液分离,得到浸出液和滤渣,实现锂离子电池正极废料中金属的浸出。基于此浸出方法,本发明提供了一种基于金属闭环循环的锂离子电池正极废料的回收方法。所述锂离子电池正极废料中金属的浸出方法金属的浸出率高、浸出时间短,处理成本低,适用范围广,避免了二次污染和现有技术中对浸出液中各种金属进行分离提纯的复杂流程;所述基于金属闭环循环的锂离子电池正极废料的回收方法工艺流程短,实现了金属的闭环循环利用。
-
公开(公告)号:CN102751549B
公开(公告)日:2014-12-24
申请号:CN201210230857.3
申请日:2012-07-04
Applicant: 中国科学院过程工程研究所
IPC: H01M10/54
CPC classification number: Y02W30/84
Abstract: 一种废旧锂离子电池正极材料全组分资源化回收方法:1)采用含氟有机酸水溶液分离废旧锂离子电池正极材料中的活性物质与铝箔,液-固-固分离得到浸出液、含锂活性物质和铝箔;2)含锂活性物质分别进行高温焙烧、碱液除杂处理;3)浸出液分别进行加酸蒸馏回收含氟有机酸、加碱沉淀杂质离子、碳酸铵共沉淀制备镍钴锰碳酸盐三元前驱体;4)将处理后的活性物质和镍钴锰碳酸盐三元前驱体混合物组分调控,配入一定比例的碳酸锂后高温固相烧结再制备镍钴锰酸锂三元复合正极材料。本发明适用范围广,分离介质可循环利用,含锂活性物质与铝箔分离效率高,实现了废旧锂离子电池中正极材料的短程直接再制备,适合进行废旧锂离子电池大规模资源化回收。
-
公开(公告)号:CN102780053A
公开(公告)日:2012-11-14
申请号:CN201210251559.2
申请日:2012-07-19
Applicant: 中国科学院过程工程研究所
IPC: H01M10/54
CPC classification number: Y02W30/84
Abstract: 本发明公开了一种过热水蒸气清洁分离废旧锂离子电池正极材料的方法,将废旧锂离子电池正极材料切割至一定尺寸,置入高温反应器中用过热水蒸气处理一段时间,在氮气保护下冷却至室温左右,经机械粉碎后振动筛分,电选分离单质铝,最后在含氧气氛中焙烧去除导电碳材料,得到纯度98%以上的正极活性组分。所述分离方法步骤简单,不消耗有毒化学试剂,锂离子流失少,回收铝箔以单质形式存在。回收的正极活性组分纯度较高,可经组分调整后可再制造锂离子电池正极材料,提高废弃资源循环利用效率。
-
公开(公告)号:CN101121962A
公开(公告)日:2008-02-13
申请号:CN200610089232.4
申请日:2006-08-10
Applicant: 中国科学院过程工程研究所
CPC classification number: Y02P10/234
Abstract: 本发明涉及一种从钒(V)铬(VI)混合液中完全回收钒和铬的新工艺,主要步骤包括:首先用伯仲复合胺萃取剂按逆流接触的方式与含有钒(V)铬(VI)水溶液接触萃取,将水中绝大部分钒和少量铬萃取到有机相中,而大部分铬留在水相中;然后用酸调节萃余液(水相)的pH,并加一定量的还原剂进行还原反应,再用氢氧化钠回调水溶液的pH值后过滤,得到的固体即为水合氧化铬,同时以碱液为反萃取剂,通过逆流接触方式将钒从富钒有机相中反萃到水中;再用铵盐沉淀法将钒从溶液中以偏钒酸铵的形式分离;最后采用高效精馏技术处理沉钒上清液,塔顶得浓氨水,塔釜得到脱氨水,直接返回到萃取过程。本发明以伯仲复合胺为萃取剂,低温选择性萃取分离钒和铬,不仅工艺流程简单,而且成本低,适合于大规模工业生产。此外,本发明还可以得到高纯偏钒酸铵和16%的浓氨水,并通过溶液回用确保水中钒和铬全部回收。
-
公开(公告)号:CN108277367B
公开(公告)日:2020-09-18
申请号:CN201710010102.5
申请日:2017-01-06
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种从含锂矿石中提锂的方法,该方法为:将含锂矿石与添加剂混合后进行研磨,研磨过程中含锂矿石得到机械化学活化,研磨后得到的混合物中含有水溶性含锂的络合物;用浸出剂浸出混合物中的锂,固液分离后得到含锂的浸出液和浸出渣。本发明能够对含锂矿石中的锂元素实现95%以上的提取,其浸出率最高可达到99%以上。经过后续处理获得了纯度达到了99.9%的高纯碳酸锂,可以和电池生产工艺相衔接,产品直接用于锂电池生产中。本发明从含锂矿石中提锂的过程中是在较低温度下进行的,对设备的要求很低,同时降低了生产能耗与成本,减少了生产过程的安全隐患,提升了整个回收工艺的生产效率,具有良好的应用前景。
-
公开(公告)号:CN107919508B
公开(公告)日:2019-02-01
申请号:CN201610886168.6
申请日:2016-10-11
Applicant: 中国科学院过程工程研究所
IPC: H01M10/54 , H01M4/505 , H01M4/525 , H01M4/58 , H01M10/0525
Abstract: 本发明公开了一种利用废旧锂离子电池再制造正极材料的方法,该方法包括:将废旧锂离子电池进行预处理得到正极废料粉末,对所述正极废料粉末进行低温等离子体烧结,得到修复改性后的正极材料。本发明适用范围广、技术灵活,突破了传统高温固相法的局限性,通过低温等离子体对预处理得到的正极废料粉末进行烧结,强化材料晶格修复和重构,得到活性物质经金属掺杂或金属化合物包覆改性后的正极材料,进而显著提升再制造正极活性材料的电化学性能,具有良好的市场前景。
-
公开(公告)号:CN108336442A
公开(公告)日:2018-07-27
申请号:CN201810171794.6
申请日:2018-03-01
Applicant: 中国科学院过程工程研究所
IPC: H01M10/54
Abstract: 本发明公开了一种从废旧锂离子电池正极片中分离铝箔和正极废料的方法,所述方法包括以下步骤:对废旧锂离子电池正极片进行改性预处理,改变锂离子电池正极片中粘结剂分子的活性,削弱正极材料与铝箔之间的粘结力;之后置于分离液中,在外加作用力下将正极废料与铝箔相互剥离,固液分离,液体循环继续用于正极材料与铝箔分离,固体物料经过干燥和筛分,得到铝箔和正极废料粉末。所述方法流程短,成本低,环境友好,且铝箔与正极废料的分离率高,得到的铝箔纯度高。
-
公开(公告)号:CN108277367A
公开(公告)日:2018-07-13
申请号:CN201710010102.5
申请日:2017-01-06
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种从含锂矿石中提锂的方法,该方法为:将含锂矿石与添加剂混合后进行研磨,研磨过程中含锂矿石得到机械化学活化,研磨后得到的混合物中含有水溶性含锂的络合物;用浸出剂浸出混合物中的锂,固液分离后得到含锂的浸出液和浸出渣。本发明能够对含锂矿石中的锂元素实现95%以上的提取,其浸出率最高可达到99%以上。经过后续处理获得了纯度达到了99.9%的高纯碳酸锂,可以和电池生产工艺相衔接,产品直接用于锂电池生产中。本发明从含锂矿石中提锂的过程中是在较低温度下进行的,对设备的要求很低,同时降低了生产能耗与成本,减少了生产过程的安全隐患,提升了整个回收工艺的生产效率,具有良好的应用前景。
-
公开(公告)号:CN107230811A
公开(公告)日:2017-10-03
申请号:CN201610179257.7
申请日:2016-03-25
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种正极材料中金属组分的选择性浸出剂及回收方法,该浸出剂为含有还原剂、铵盐和氨水的溶液,所述还原剂为碱性条件下具有还原性的物质,所述浸出剂中氨水的浓度为0~10mol/L,铵根离子的浓度为0~8mol/L,还原剂的浓度为0~2mol/L。本发明提供的浸出剂来源范围广,原料价格便宜,浸出选择性和浸出率高(达90%以上),制备的碳酸锂纯度达99%,用于回收正极材料中的Li、Co和Ni,避免了现有酸浸工艺杂离子的引入,简化了分离提纯的过程,实现了浸出剂的循环使用,降低了处理成本,适合工业化大规模生产。
-
-
-
-
-
-
-
-
-