基于多次单类型采集结果的综合异常判断的系统

    公开(公告)号:CN108429649B

    公开(公告)日:2020-11-06

    申请号:CN201810244277.7

    申请日:2018-03-23

    Abstract: 本发明公开了一种基于多次单类型采集结果的综合异常判断系统,涉及网络预警技术领域。所述系统包括:阈值生成单元和异常判断单元;所述阈值生成单元,在从被采集系统上获取到的采集数据的基础上,计算判断阈值;所述异常判断单元,在所述判断阈值和所述采集数据的基础上,判断被采集系统运行是正常还是异常。本发明所述系统对采集到的数据进行多种方式进行判断,从而在不接触被监测系统后台日志或硬件数据的情况下准确识别出被检测系统的运行状况,解决了因使用平均值计算抗干扰性太弱,固定阈值判断性能太差,阈值波动范围设置方案单一且低效的问题。

    一种复杂场景下特定标志物检测系统

    公开(公告)号:CN116935117A

    公开(公告)日:2023-10-24

    申请号:CN202310887423.9

    申请日:2023-07-19

    Abstract: 本发明涉及标志物检测系统领域,尤其为一种复杂场景下特定标志物检测系统,包括:收集模块:用于通过网络爬虫技术对特定标志物图片进行收集,获得特定标志物图片;处理模块:用于对收集模块收集的特定标志物图片进行图片预处理,获得预处理数据;分类器训练模块:用于根据处理模块处理得到的预处理数据进行模型训练,得到自动分类模型;分类模块:用于连接自动分类模型,对特定标志物图片进行分类。本发明通过颜色和形状的标志物检测算法,从色彩增强、颜色分割和形状分类三个方面提高特定标志物检测系统算法的鲁棒性,通过比较RGB和HSV颜色分割效果,选取效果更好的HSV颜色分割,在形状分类中不仅仅使用简单的SVM模型训练而且同时使用Contourlet变化提高算法的鲁棒性使的算法预测效果更好,保证出现差错在系统允许的范围内。

Patent Agency Ranking