基于规则辅助的高炉冶炼过程数据驱动建模方法

    公开(公告)号:CN107092743B

    公开(公告)日:2020-03-06

    申请号:CN201710246244.1

    申请日:2017-04-15

    Abstract: 本发明涉及一种基于规则辅助的高炉冶炼过程数据驱动建模方法,通过收集、整理专家知识得到IF…THEN…规则,根据IF…THEN…规则将采集的原始数据转化为规则数据,利用多核学习算法整合多个专家知识得到基于规则的规则预测模型,并建立数据驱动预测模型,通过Sigmoid函数将规则预测模型和数据驱动预测模型的输出决策值转换为后验概率,并对数据驱动预测模型和规则预测模型进行集成,获得规则辅助的数据驱动模型。由于将专家知识、模糊规则等异质信息与数据驱动模型进行集成,与现有技术相比,本发明建模方法可以显著提高数据驱动模型的预测精度和可解释性,从而提高高炉冶炼过程采集数据的利用率。

    一种耐噪在线多分类核学习算法

    公开(公告)号:CN109359677A

    公开(公告)日:2019-02-19

    申请号:CN201811170840.7

    申请日:2018-10-09

    Abstract: 本发明涉及一种基于自适应ramp损失函数的耐噪在线多分类核学习算法。通过引入核函数构造非线性多分类器,针对基于批处理技术的多分类方法无法高效处理数据流问题,而现有在线学习算法无法有效控制噪声样本的影响的问题,设计该耐噪在线多分类核学习算法。该方法能够减少参与模型计算的支持向量的数量,有效控制噪声影响,显著提高模型更新效率,提高噪声数据多分类问题的分类精度,满足实际应用问题的需求。本发明耐噪在线多分类核学习算法,克服了基于批处理技术的传统分类方法无法高效处理数据流的问题,也克服了现有在线学习算法如Perceptron和Pegasos等算法无法有效抑制噪声影响的问题,可高效应用于图片的场景分类等实际应用问题。

    一种基于步长控制的在线软间隔核学习算法

    公开(公告)号:CN109272033A

    公开(公告)日:2019-01-25

    申请号:CN201811037902.7

    申请日:2018-09-06

    Abstract: 本发明涉及一种基于步长控制的在线软间隔核学习算法(OSKL)。通过引入核函数构造非线性分类器,引入软间隔参数控制噪声数据的影响,并基于在线梯度下降算法的基本框架设计具有鲁棒性的在线核学习算法。该算法能够降低模型存储空间、有效控制噪声影响、模型更新的计算复杂度仅为O(1),具有实时性强、易于实现等优势,是处理和分析数据流问题的天然工具。本发明在线学习算法,克服了基于批处理技术的传统分类方法无法高效处理数据流的问题,也克服了现有在线学习算法如Kernel Perceptron和Pegasos等算法无法有效抑制噪声影响的问题。

    一种基于预界机制的在线加权极限学习机方法

    公开(公告)号:CN108875961A

    公开(公告)日:2018-11-23

    申请号:CN201810593832.7

    申请日:2018-06-11

    Abstract: 本发明涉及一种基于预界机制的在线加权极限学习机方法,首先确定预界取值,在训练集上选择有效向量构造初始有效向量集合,利用加权机制建立加权极限学习机模型,并采用矩阵校正技术和Sherman‑Morrison‑Woodbury公式更新加权极限学习机模型得到在线预测器,从而实现对应用场景中出现的类别不平衡数据流的在线预测。该方法采用固定的预界机制,能够有效防止信息溢出,进而精确控制在线学习模型的规模。本发明在线学习方法,能够灵活有效处理类别不平衡和概念漂移同时发生的应用问题。此外,数据可通过数据块的形式进行采集,进一步降低了方法的计算复杂度,拓宽了模型的应用范围,可有效服务于具概念漂移特性的类别不平衡数据在线预测任务的实施。

    基于预算支持向量集的LS‑SVMs在线学习方法

    公开(公告)号:CN105787507B

    公开(公告)日:2017-06-30

    申请号:CN201610087343.5

    申请日:2016-02-16

    Abstract: 本发明涉及一种基于预算支持向量集的LS‑SVMs在线学习方法,在训练集上确定预算范围,选择初始支持向量集合,建立LS‑SVMs模型,采用共轭帝都发求解LS‑SVMs模型,并利用低秩矩阵校正方法以及Sherman‑Morrison‑Woodbury公式更新LS‑SVMs模型得到在线预测器,实现了对数据流的在线预测,该方法采用固定预算策略,能有效控制在线学习模型的规模、节约存储空间、计算复杂度低、易于实现。本发明在线学习方法,能够灵活处理具有数据流特征的在线应用问题,数据可以以数据块的形式收集,与传统批处理方式以及当前的在线学习方法相比,大幅度降低了计算复杂难度和模型运行时间,可以同时处理回归问题和分类问题,能够高效处理LS‑SVMs模型选择问题。

    自适应高炉铁水硅含量趋势预报方法

    公开(公告)号:CN105574297B

    公开(公告)日:2017-06-30

    申请号:CN201610088041.X

    申请日:2016-02-16

    Abstract: 本发明涉及一种自适应高炉铁水硅含量趋势预报方法,基于在线最小二乘支持向量机,建立基于在线LS‑SVMs模型的自适应预报器,通过不断采集新样本对趋势预报模型进行自适应性更新,追踪高炉冶炼过程的动态变化,实时性和可靠性好。本发明提供的自适应高炉铁水硅含量趋势预报方法,能够灵活高效处理高炉铁水硅含量的趋势预报问题,数据可以以数据块的形式收集,与传统批处理方式以及当前的在线预报方法相比,有效降低了计算复杂难度和模型运行时间。

    规则辅助的数据驱动建模方法

    公开(公告)号:CN105975977A

    公开(公告)日:2016-09-28

    申请号:CN201610236242.X

    申请日:2016-05-05

    CPC classification number: G06K9/6256 G06K9/6269

    Abstract: 本发明涉及一种规则辅助的数据驱动建模方法,通过收集、整理专家知识得到IF…THEN…规则,根据IF…THEN…规则将采集的原始数据转化为规则数据,利用多核学习算法整合多个专家知识得到基于规则的规则预测模型,并建立数据驱动预测模型,通过Sigmoid函数将规则预测模型和数据驱动预测模型的输出决策值转换为后验概率,并对数据驱动预测模型和规则预测模型进行集成,获得规则辅助的数据驱动模型。由于将专家知识、模糊规则等异质信息与数据驱动模型进行集成,与现有技术相比,本发明建模方法可以显著提高数据驱动模型的预测精度和可解释性,建立的模型可以是神经网络、SVMs等一般非线性模型。

    基于惩罚回归的快速异常点检测方法

    公开(公告)号:CN105824785A

    公开(公告)日:2016-08-03

    申请号:CN201610141620.6

    申请日:2016-03-11

    CPC classification number: G06F17/18

    Abstract: 本发明涉及一种基于惩罚回归的快速异常点检测方法,首先判断线性回归模型中是否存在内生解释变量,当不存在内生解释变量时,依据数据点的方差规律,构建标准方差的惩罚加权最小二乘目标函数,对标准方差进行选择和估计,根据标准方差的选择和估计结果检验异方差,从而进行异常点的检测,当存在内生解释变量时,依据数据点的均值规律,构造均值漂移模型,根据均值漂移模型构建惩罚融合广义矩目标函数,进行均值漂移参数的选择和估计,根据均值漂移参数的估计结果进行异常点的检测。本发明不需要构造检验统计量并求其分布,避免了比如最大似然估计等复杂的运算,能够一步给出所有数据的异常点情况,解决多个异常点时传统方法在掩盖和淹没这两种现象下可能失效的问题,节省检测的运行时间,提高数据处理的效率。

Patent Agency Ranking