-
公开(公告)号:CN109993095B
公开(公告)日:2022-12-20
申请号:CN201910230227.8
申请日:2019-03-26
Applicant: 东北大学
Abstract: 本发明提供一种面向视频目标检测的帧级别特征聚合方法,涉及计算机视觉技术领域。本发明提供的面向视频目标检测的帧级别特征聚合方法,首先通过特征网络从单帧图像中提取深层的特征;然后使用光流网络FlowNet提取帧间的光流;并基于光流将相邻帧的帧级别特征对齐到当前帧,实现帧级别的特征传播;最后通过映射网络和权重放缩网络计算放缩余弦相似性权重,并使用放缩余弦相似性权重聚合多帧特征,生成聚合后的特征;本发明提供的面向视频目标检测的帧级别特征聚合方法,使得权重分配更加合理,将聚合后的特征输入到视频目标检测网络中,能够使在运动模糊、像素低、镜头变焦、遮挡等复杂场景下的视频检测具有较好的检测效果,具有鲁棒性。
-
公开(公告)号:CN110362383B
公开(公告)日:2022-06-24
申请号:CN201910627610.7
申请日:2019-07-12
Applicant: 东北大学
Abstract: 本发明提供一种面向季节型非平稳并发量的P‑E权衡的VM迁移方法,涉及云计算技术领域。该方法包括VM静态部署和VM动态迁移两部分;首先,根据物理服务器提供的以及各个VM需要的内存与CPU资源进行VM的静态部署,该过程在满足客户需求的情况下,将VM部署到物理主机上,同时,尽量减少物理主机的数量,达到降低能耗的目的。VM静态部署之后,采用VM动态迁移策略完成VM的迁移。包括两部分,第一部分使用RBF算法对各VM的平均响应时间进行预测,根据设置的阈值选择需要迁移的VM;第二部分是目标服务器的选择,通过更新的资源需求矩阵选择目标服务器,完成一个阶段的VM的迁移;第一部分与第二部分循环进行,完成整个的VM迁移过程。
-
公开(公告)号:CN110149237B
公开(公告)日:2021-06-22
申请号:CN201910510953.5
申请日:2019-06-13
Applicant: 东北大学
Abstract: 本发明提出一种Hadoop平台计算节点负载预测方法,包括:基于滑动窗口二次检测算法的数据预处理方法;基于ARIMA算法的节点负载线性预测方法;基于RNN算法的节点负载非线性残差预测方法;将ARIMA算法与RNN算法预测出来的结果进行线性相加作为最终的预测结果;本发明通过对各个结算节点历史数据的分析,可以提取有价值的信息,进而合理预测下一时间段内的计算节点的负载,精确预测计算节点的负载可以为资源管理器合理地给AppMaster分配资源提供依据,进而缓解高负载节点的压力,提升低负载节点的计算资源利用率,提高Hadoop集群的可靠性和性能。本发明通过ARIMA和RNN模型组合,更加精确的对负载进行预测。
-
公开(公告)号:CN110362383A
公开(公告)日:2019-10-22
申请号:CN201910627610.7
申请日:2019-07-12
Applicant: 东北大学
Abstract: 本发明提供一种面向季节型非平稳并发量的P-E权衡的VM迁移方法,涉及云计算技术领域。该方法包括VM静态部署和VM动态迁移两部分;首先,根据物理服务器提供的以及各个VM需要的内存与CPU资源进行VM的静态部署,该过程在满足客户需求的情况下,将VM部署到物理主机上,同时,尽量减少物理主机的数量,达到降低能耗的目的。VM静态部署之后,采用VM动态迁移策略完成VM的迁移。包括两部分,第一部分使用RBF算法对各VM的平均响应时间进行预测,根据设置的阈值选择需要迁移的VM;第二部分是目标服务器的选择,通过更新的资源需求矩阵选择目标服务器,完成一个阶段的VM的迁移;第一部分与第二部分循环进行,完成整个的VM迁移过程。
-
公开(公告)号:CN110262897A
公开(公告)日:2019-09-20
申请号:CN201910510964.3
申请日:2019-06-13
Applicant: 东北大学
IPC: G06F9/50
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务初始分配方法,包括:使用延迟调度策略的AppMaster选择方法,开启AppMaster;基于BP神经网络的节点,计算资源分配数量;使用DRF算法的用户队列和用户作业选择方法,开启子任务;本发明基于延迟调度策略的AppMaster选择算法,提高了AppMaster运行时的稳定性,保证了作业的正常运行。基于BP神经网络的节点计算资源分配算法,减少高负载标签计算节点分配的任务量,增加低负载标签计算节点分配的任务量,提高了集群整体的稳定性和性能。基于DRF的用户队列和用户作业选择算法,当作业所属的队列资源不够时,根据占主导地位的计算资源使用情况来选择叶子队列和用户作业,最终达到合理化计算任务初始分配,均衡集群负载,提高集群性能的目标。
-
公开(公告)号:CN110162406A
公开(公告)日:2019-08-23
申请号:CN201910466883.8
申请日:2019-05-31
Applicant: 东北大学
IPC: G06F9/50
Abstract: 本发明提出一种支持性能保障的操作模式虚拟机数量评估方法,包括:初始化参数;求出资源可用量和资源需求量;求出需要调整的虚拟机数量;据虚拟机当前数量、虚拟机调整数量的和与虚拟机的最少数量之间的大小关系,调整操作模式虚拟机数量来应对服务突发并发量。根据并发量预测结果调整操作模式虚拟机数量以满足用户需求,当性能不足时,需要从热备份转移一定数量的虚拟机到操作模式。当性能过高时,减少一部分操作模式虚拟机会使系统可靠性增加并减低能耗。确定操作模式转移数量不仅会对性能造成影响,还会影响可靠性和能耗,本发明制定相应操作模式虚拟机资源调整策略,建立支持性能保障的操作模式数量调整方法。
-
公开(公告)号:CN110083518A
公开(公告)日:2019-08-02
申请号:CN201910354685.2
申请日:2019-04-29
Applicant: 东北大学
IPC: G06F11/34
Abstract: 本发明提供一种基于AdaBoost-Elman的虚拟机软件老化预测方法,涉及云计算技术领域。该方法首先设定评估虚拟机软件老化程度的等级,并训练虚拟机的软件老化指标预测模型和未老化虚拟机参照预测模型;然后将业务并发量预测值和性能数据输入到离线过程训练的虚拟机的软件老化指标预测模型和未老化虚拟机参照预测模型中,输出虚拟机的软件老化指标预测结果和未老化虚拟机的参照预测结果;最后根据虚拟机的软件老化指标预测结果和未老化虚拟机的参照预测结果来评估虚拟机的软件老化趋势。本发明方法能够预测出当前工作虚拟机的软件老化指标,并与未老化的虚拟机进行对比,从而得到下一段时间虚拟机的软件老化程度,提前采取防范措施。
-
公开(公告)号:CN110262897B
公开(公告)日:2023-01-31
申请号:CN201910510964.3
申请日:2019-06-13
Applicant: 东北大学
IPC: G06F9/50
Abstract: 本发明提出一种基于负载预测的Hadoop计算任务初始分配方法,包括:使用延迟调度策略的AppMaster选择方法,开启AppMaster;基于BP神经网络的节点,计算资源分配数量;使用DRF算法的用户队列和用户作业选择方法,开启子任务;本发明基于延迟调度策略的AppMaster选择算法,提高了AppMaster运行时的稳定性,保证了作业的正常运行。基于BP神经网络的节点计算资源分配算法,减少高负载标签计算节点分配的任务量,增加低负载标签计算节点分配的任务量,提高了集群整体的稳定性和性能。基于DRF的用户队列和用户作业选择算法,当作业所属的队列资源不够时,根据占主导地位的计算资源使用情况来选择叶子队列和用户作业,最终达到合理化计算任务初始分配,均衡集群负载,提高集群性能的目标。
-
公开(公告)号:CN110348122B
公开(公告)日:2023-01-17
申请号:CN201910624856.9
申请日:2019-07-11
Applicant: 东北大学
Abstract: 本发明提供一种基于特征选择的季节型非平稳并发量能耗分析方法,涉及云计算技术领域。该方法针对Web应用特性建立能耗模型。首先,基于负载检测工具提取出相关多维特征,并使用工具测出对应能耗数据;然后,对提取的数据进行预处理,提高数据质量与建模效率;然后,采用效率高的过滤型特征选择算法与性能好的装箱式特征选择算法进行相关特征的选择;最后,对筛选完的多维特征以及能耗数据进行回归分析,建立能耗模型。本发明方法同时考虑多种对云服务中心整体能耗有贡献的资源,提取多种数据特征,并对提取的数据进行预处理,提高了数据质量与建模效率,也使能耗模型更加精确。
-
公开(公告)号:CN110413657B
公开(公告)日:2021-08-17
申请号:CN201910624505.8
申请日:2019-07-11
Applicant: 东北大学
IPC: G06F16/2458 , G06F16/215 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种面向季节型非平稳并发量的平均响应时间评估方法,涉及云计算技术领域。该方法首先基于自相关系数法判定云服务系统中的请求并发量中的季节型非平稳并发量;然后建立基于RNN‑LSTM神经网络的季节型非平稳并发量预测模型,并进行季节型非平稳并发量预测;建立基于RBF的云服务系统平均响应时间预测模型,将预测的用户季节型非平稳并发量、CPU利用率、内存利用率这些影响云服务平均响应时间的资源状态信息预处理完之后作为输入,输出为云服务系统的平均响应时间大小。本发明方法克服了传统的负载均衡策略的不足,提高了季节型非平稳并发量的预测精度,能及时对服务性能作出评估响应,使云计算系统能更好的为用户提供服务。
-
-
-
-
-
-
-
-
-