-
公开(公告)号:CN114219936A
公开(公告)日:2022-03-22
申请号:CN202111266514.8
申请日:2021-10-28
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
IPC: G06V10/25 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种目标检测方法、电子设备、存储介质和计算机程序产品,方法包括获取包含待检测目标的待检测图像;将所述待检测图像输入至目标检测模型,进行目标检测,获得所述目标检测模型输出的目标检测结果,所述目标检测模型是基于候选框及其对应的正负标签训练得到的,所述正负标签是基于所述候选框与所述候选框对应的真实框的交并比,以及动态变化的交并比阈值确定得到的。本发明通过动态变化的交并比阈值,动态变化候选框的正负标签,以使最后分配给候选框的正负标签为准确标签,从而提高候选框的标签分配准确度,进而提高目标检测模型的召回率,最终实现高性能的目标检测。
-
公开(公告)号:CN110706253B
公开(公告)日:2022-03-08
申请号:CN201910884524.4
申请日:2019-09-19
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于计算机视觉跟踪技术领域,具体涉及一种基于表观特征和深度特征的目标跟踪方法、系统、装置,旨在解决现有目标跟踪方法忽略目标场景的深度信息导致跟踪精度低的问题。本系统方法包括根据t‑1帧的目标位置和预设的目标尺寸,获取待追踪目标在第t帧图像的目标区域和搜索区域;通过表观特征、深度特征提取网络分别提取目标区域、搜索区域的表观特征、深度特征;基于预设权重,分别对目标区域、搜索区域的表观特征、深度特征进行加权平均,得到各自的融合特征;根据目标区域和搜索区域的融合特征,通过相关滤波器得到目标的响应图;将响应图的峰值对应的位置作为第t帧的目标位置。本发明提取目标场景的深度信息,提高了目标跟踪的精度。
-
公开(公告)号:CN113628245A
公开(公告)日:2021-11-09
申请号:CN202110786110.5
申请日:2021-07-12
Applicant: 中国科学院自动化研究所
Abstract: 本发明提供一种多目标跟踪方法、装置、电子设备和存储介质,所述方法包括:获取待检测的当前视频帧;基于目标检测网络,对所述当前视频帧进行多目标检测,得到检测结果;基于所述检测结果,对所述当前视频帧中的各目标进行目标跟踪;其中,所述目标检测网络包括若干组并行的目标检测分支和特征抽取分支;所述目标检测分支和特征抽取分支用于对所述当前视频帧的特征图中各个位置点进行处理。本发明提供的方法、装置、电子设备和存储介质,节省了目标检测和特征抽取的时间消耗,大大提升了目标跟踪的速度,从而能够实现多目标的实时性跟踪,并且增强了抽取特征的鉴别性,同时避免了不必要的人力消耗和资源消耗。
-
公开(公告)号:CN112991476B
公开(公告)日:2021-09-28
申请号:CN202110190015.9
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。
-
公开(公告)号:CN112991476A
公开(公告)日:2021-06-18
申请号:CN202110190015.9
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
Abstract: 本发明属于图像识别领域,具体涉及了一种基于深度压缩域特征的场景分类方法、系统、装置,旨在解决现有的场景分类方法由于图像的分辨率高数据庞大而导致的计算资源浪费、实时性差以及存储空间占用过多的问题。本发明包括:通过JPEG压缩方法对待测图像进行部分解码,获得待测图像的三通道DCT系数,通过反卷积调节所述三通道DCT系数的尺寸,获得尺寸匹配的三通道DCT系数,将所述尺寸匹配的三通道DCT系数进行拼接融合,获取深度压缩域特征,基于所述深度压缩域特征,通过训练好的压缩域特征分类网络,获取所述待测图像的场景类别。本发明避免了将图像全部解码造成额外计算成本增加和存储介质浪费,降低了时间消耗和计算资源消耗。
-
公开(公告)号:CN112990273A
公开(公告)日:2021-06-18
申请号:CN202110190037.5
申请日:2021-02-18
Applicant: 中国科学院自动化研究所
IPC: G06K9/62 , G06K9/00 , G06N3/02 , G06N3/08 , G06F16/951
Abstract: 本发明属于图像识别领域,具体涉及了一种面向压缩域的视频敏感人物识别方法、系统、设备,旨在解决现有的敏感人物识别方法低效和浪费资源的问题。本发明包括:对待检测视频部分解码获取压缩域多模态信息,将压缩域多模态信息进行检测和校准,将校准后的压缩域人脸多模态信息通过训练好的多模态人脸识别网络获取多模态人脸特征,将多模态人脸特征与敏感人脸特征库进行比对,确认是否存在敏感人脸。其中,压缩域人脸多模态信息通过I分支、MV分支和Res分支分别提取不同的特征再进行多模态特征融合得到唯一的多模态人脸特征。本发明只需要进行部分解码就能完成特征提取,解决了现有技术低效和资源浪费的问题,同时保有较高的识别精度。
-
公开(公告)号:CN112950576A
公开(公告)日:2021-06-11
申请号:CN202110220740.6
申请日:2021-02-26
Applicant: 中国科学院自动化研究所 , 人民中科(济南)智能技术有限公司
Abstract: 本发明涉及一种基于深度学习的输电线路缺陷智能识别方法及系统,所述智能识别方法包括:获取待测输电线路图像;根据所述输电线路图像,基于多分辨率融合金字塔,确定粗粒度多分辨率层特征信息;根据所述粗粒度多分辨率层特征信息,基于细粒度交互金字塔,得到细粒度多分辨率层特征信息;根据所述细粒度多分辨率层特征信息,基于特征增强金字塔,得到增强特征图像;根据增强特征图像,确定待测输电线路的缺陷类别及缺陷位置,可提高对多尺度目标的检测精度。
-
公开(公告)号:CN110717317B
公开(公告)日:2021-06-08
申请号:CN201910867119.1
申请日:2019-09-12
Applicant: 中国科学院自动化研究所
IPC: G06F40/169 , G06F40/289 , G06Q10/10
Abstract: 本发明属于文本标注领域,具体涉及一种在线人工中文文本标注系统,旨在解决现有人工中文文本标注系统无法实现多人协作标注的问题。本发明系统包括:服务器、第一、二客户端;第一、二客户端分别与服务器相连;服务器包括数据库;第一客户端包括管理模块;第二客户端包括标注、重分词、切换模块;管理模块配置为拆分标注文本,并上传数据库;数据库配置为根据分配指令将标注项目与标注用户关联;标注模块配置为对标注项目中的语句进行标注;重分词模块配置为依据输入指令对标注项目的语句进行重新分词;切换模块配置为对标注、重分词模块工作状态的切换。本发明实现了多人协作标注,并提高了文本标注的准确率和效率。
-
公开(公告)号:CN108764050B
公开(公告)日:2021-02-26
申请号:CN201810398601.0
申请日:2018-04-28
Applicant: 中国科学院自动化研究所
Abstract: 本发明涉及人体行为识别领域,具体涉及一种基于角度无关性的骨架行为识别方法、系统及设备,只在提高角度无关性骨架行为识别的准确率。本发明的基于角度无关性的骨架行为识别方法,包括:基于每个视角的骨架序列设计特定视角子网,通过空域注意力和时域注意力模块分别重点关注关键关节点和关键帧,通过多层长短时记忆网络学习每个视角序列的判别性特征;将各个特定视角子网的输出特征串联起来作为公共子网的输入,通过双向长短时记忆网络进一步学习角度无关性特征,通过视角注意力模块重点关注关键视角;提出正则化交叉熵损失函数推动网络多模块共同学习。本发明有效地提高了识别准确率,能够自动专注学习信息较多的视角特征。
-
公开(公告)号:CN110135562B
公开(公告)日:2020-12-01
申请号:CN201910360632.1
申请日:2019-04-30
Applicant: 中国科学院自动化研究所 , 国网通用航空有限公司
Abstract: 本发明属于计算机视觉及机器学习领域,具体涉及了一种基于特征空间变化的蒸馏学习方法、系统、装置,旨在解决学生网络无法学习教师网络全局知识的问题。本发明方法包括:按照蒸馏学习教师网络的参数结构构建对应的学生网络;分别选取预设的网络层,计算每一层的特征空间表示以及特定两个层间的跨层特征空间变化矩阵;计算基于特征空间变化的损失函数,根据真实标签计算分类损失函数;通过两个损失函数的加权将教师网络的特征空间变化作为知识迁移到学生网络中。本发明将教师网络层与层之间的特征空间变化刻画为一种新的知识,从而,使得学生网络在学习层与层之间的特征空间变化时,就学习到整个教师网络全局的知识。
-
-
-
-
-
-
-
-
-