一种基于多粒度联想学习的手绘图像实时检索方法

    公开(公告)号:CN113886615A

    公开(公告)日:2022-01-04

    申请号:CN202111241283.5

    申请日:2021-10-25

    Abstract: 本发明属于图像检索领域,具体涉及一种多粒度联想学习的手绘图像实时检索方法,包括:采用三重态损失函数与多粒度联想学习方法训练改进的深度神经网络模型,训练好的深度神经网络模型提取草图分支的嵌入向量,将其送入判别器判断该草图分支的等级,再将该草图分支送入等级对应的降维层,计算草图分支与图像间的欧式距离,根据欧式距离,返回检索到的top‑k张图片;本发明设计多阶段模型,避免不完整草图的多样性混淆,提出一种渐进式不完整草图的多粒度关联学习方法,使得每个不完整草图的嵌入空间逼近后续草图及其对应目标照片的嵌入空间,尽可能以最少的草图笔画检索出目标图片。

    一种基于样本可信度的深度神经网络图像识别方法及系统

    公开(公告)号:CN113505821A

    公开(公告)日:2021-10-15

    申请号:CN202110726015.6

    申请日:2021-06-29

    Abstract: 本发明属于图像识别领域,具体涉及一种基于样本可信度的深度神经网络图像识别方法及系统,方法包括获取待处理的图像,将待处理的图像输入到训练好的深度神经网络模型中,再将每个图像传入预识别网络后的输出的结果,经过Softmax处理后的最大值,作为该图片的可信度,对于可信度高的图片,在经历浅层卷积模块后即得到识别结果,对于低可信度图片,将进入到下一层网络再次进行特征提取、预识别,再重复以上操作,即计算其可信度直到图片可信度达到高可信度或者最深层网络;本发明样本分流的方式,减少了网络的计算量,训练过程中实现可信样本与不可信样本的分层隔离训练,提高各自的识别准确率,与抗干扰能力。

Patent Agency Ranking