-
公开(公告)号:CN110348383A
公开(公告)日:2019-10-18
申请号:CN201910625253.0
申请日:2019-07-11
Inventor: 丁忆 , 李朋龙 , 胡翔云 , 曾安明 , 张泽烈 , 胡艳 , 徐永书 , 魏域君 , 李晓龙 , 张觅 , 罗鼎 , 陈静 , 郑中 , 刘朝晖 , 王亚林 , 范文武 , 王小攀 , 连蓉 , 林熙 , 谭攀
Abstract: 本发明公开了一种基于卷积神经网络回归的道路中心线和双线提取方法,包括如下步骤:利用已训练卷积神经网络,预测出待提取的高分辨率遥感影像的道路中心线距离图和道路宽度图;利用非极小值抑制算法,结合道路中心线距离图提取出道路中心线;根据提取出的道路中心线,结合道路宽度图提取出道路双线;选取道路中心线上的像素点作为初始道路种子点,计算初始道路种子点所在的道路方向,利用道路追踪算法重建道路网络的拓扑结构,输出道路网络提取结果。该方法通过端对端的训练,直接从训练数据中学习到易于分类的特征,不需要任何后处理来提取道路中线和边线,泛化能力更强,道路提取精度高,细小道路提取效果较好。
-
公开(公告)号:CN107092871B
公开(公告)日:2018-01-16
申请号:CN201710220588.5
申请日:2017-04-06
IPC: G06K9/00
Abstract: 本发明公开了一种基于多尺度多特征融合的遥感影像建筑物检测方法,包括对高分辨率遥感影像降采样,获得由不同尺度的影像构成的影像金字塔;计算影像金字塔的边缘影像;对不同尺度的边缘影像进行多组特征计算并进行融合建立特征模型;根据特征模型与邻域局部非极大值抑制进行窗口选取获得目标窗口;对目标窗口进行小范围内的膨胀/收缩计算获得矩形窗口;根据目标窗口的主方向旋转所述矩形窗口得到最优目标窗口,并根据最优目标窗口提取出建筑物。其显著效果是:在高斯金字塔影像上进行多尺度的建筑物检测,对大小、形状、朝向各异的建筑物的检测具有普适性;且有效地提高了建筑物自动检测的精度和效率。
-
公开(公告)号:CN107092871A
公开(公告)日:2017-08-25
申请号:CN201710220588.5
申请日:2017-04-06
IPC: G06K9/00
CPC classification number: G06K9/00637 , G06K9/00671
Abstract: 本发明公开了一种基于多尺度多特征融合的遥感影像建筑物检测方法,包括对高分辨率遥感影像降采样,获得由不同尺度的影像构成的影像金字塔;计算影像金字塔的边缘影像;对不同尺度的边缘影像进行多组特征计算并进行融合建立特征模型;根据特征模型与邻域局部非极大值抑制进行窗口选取获得目标窗口;对目标窗口进行小范围内的膨胀/收缩计算获得矩形窗口;根据目标窗口的主方向旋转所述矩形窗口得到最优目标窗口,并根据最优目标窗口提取出建筑物。其显著效果是:在高斯金字塔影像上进行多尺度的建筑物检测,对大小、形状、朝向各异的建筑物的检测具有普适性;且有效地提高了建筑物自动检测的精度和效率。
-
-