-
公开(公告)号:CN117079226A
公开(公告)日:2023-11-17
申请号:CN202311053491.1
申请日:2023-08-21
Applicant: 重庆交通大学
IPC: G06V20/54 , G06V20/40 , G06V10/44 , G06V10/82 , G06V10/80 , G06N3/0464 , G06N3/08 , G06N3/048 , G06V10/764
Abstract: 本发明公开了一种基于多尺度注意力机制的车辆重识别方法,该方法借助注意力模块能帮助多尺度注意力预测模型聚焦于车辆图像中具有显著性信息的区域,即对车辆图像中重要的局部特征和全局特征进行加权,提高模型的性能和预测准确性。注意力机制的原理是对需要重点关注的信息区域分配较高的权重,对图像内不重要的信息分配较低的权重,并且注意力机制具有增强显著特征和抑制无关特征的特点。本发明的车辆重识别方法在对不同尺度图像进行特征提取时增加了注意力权重分配,从而得到车辆图像中更加显著的特征,利用这些特征可有效提高基于车辆外观图像的车辆重识别的精度。
-
公开(公告)号:CN117033596A
公开(公告)日:2023-11-10
申请号:CN202311019385.1
申请日:2023-08-14
Applicant: 重庆交通大学
IPC: G06F16/332 , G06F16/33 , G06F40/211 , G06F40/289 , G06N3/0455 , G06N3/084
Abstract: 本发明涉及抽取式问答任务技术领域,具体涉及一种基于进阶训练的少样本抽取式问答方法,包括:构建数据格式统一的伪问答对数据和问答对数据;伪问答对数据中将问题末尾存在的实体或名词短语进行掩盖;获取预训练语言模型;通过伪问答对数据对预训练语言模型进行进阶训练,得到进阶训练模型;对进阶训练模型进行微调,得到最终的语言模型;将待预测的问题文本和给定的上下文文本输入最终的语言模型中,预测得到对应的答案。本发明能够有效改善预训练语言模型在预训练阶段和微调阶段存在的任务差异以及输入数据格式差异,从而提高少样本抽取式问答的有效性和实用性,并为少样本抽取式问答任务提供一种新的解决思路。
-
公开(公告)号:CN116823800A
公开(公告)日:2023-09-29
申请号:CN202310874021.5
申请日:2023-07-17
Applicant: 重庆交通大学
Abstract: 本发明公开了一种基于深度学习的复杂背景下桥梁混凝土裂缝检测方法,该方法使用深度学习方法训练后的桥梁裂缝识别检测模型对桥梁裂缝图像中的裂缝区域进行分割识别预测;该桥梁裂缝识别检测模型,通过注意力融合特征提取网络提取桥梁裂缝图像的高层语义特征图,通过浅层特征提取网络提取桥梁裂缝图像的位置轮廓特征图,再依据二者的融合结果预测得到桥梁裂缝图像的裂缝分割识别检测结果,降低对复杂背景像素的误判,并准确实现对裂缝区域的定位;本发明方法能够更快速、更准确的实现对复杂背景下桥梁混凝土裂缝的分割识别和提取,从而改善因背景噪声过大造成的裂缝分割识别速度慢、准确性不足等问题。
-
公开(公告)号:CN116303971A
公开(公告)日:2023-06-23
申请号:CN202310335356.X
申请日:2023-03-29
Applicant: 重庆交通大学
IPC: G06F16/332 , G06F16/33 , G06F40/177 , G06F16/36
Abstract: 本发明涉及桥梁管理养护领域,具体涉及面向桥梁管养领域的少样本表格问答方法,包括:构建包含问题文本和SQL查询语句的问题‑SQL对作为训练样本,并进行标注;在训练样本的问题文本中注入桥梁管养领域实体关系知识;建立输入为问题文本、输出为SQL查询语句的语义解析模型,并通过带标注的训练样本对语义解析模型进行预训练;对预训练后的语义解析模型进行模型微调,得到最终的语义解析模型;通过最终的语义解析模型基于给定问题文本输出SQL查询语句,以实现问答。本发明能够通过构建伪数据来让模型学习到表格问答Text‑To‑SQL任务的形式与方法,并且能够让模型精准识别桥梁管养领域的语言表述及领域词汇。
-
公开(公告)号:CN112949682A
公开(公告)日:2021-06-11
申请号:CN202110112799.3
申请日:2021-01-27
Applicant: 重庆交通大学
Abstract: 本发明公开了一种特征级统计描述学习的SAR图像分类方法,包括:将目标SAR图像输入SAR图像分类网络;卷积层提取目标SAR图像的具有中层语义的特征基元;特征统计层基于具有中层语义的特征基元提取目标SAR图像的统计基元矢量;非线性及线性变换层基于统计基元矢量生成目标SAR图像的特征级统计描述矢量;Softmax层基于特征级统计描述矢量生成目标SAR图像的分类结果。相比于传统CNN方法,本发明不仅致力于SAR图像的结构特征学习,而且在特征学习过程中特别考虑了SAR图像的特征级统计特性,致力于集成特征学习和统计分析为一体,能够有效解决利用CNN方法进行SAR图像分类时泛化能力不足的问题。
-
公开(公告)号:CN120071389A
公开(公告)日:2025-05-30
申请号:CN202510075234.0
申请日:2025-01-17
Applicant: 中国民航科学技术研究院 , 重庆交通大学
Abstract: 本发明公开了一种基于空时域特征提取与自适应聚合的视频行人重识别方法,方法步骤如下,构建视频行人重识别模型;通过主干网络提取初始的帧级特征图;由空间特征聚合模块获取局部特征和全局特征,并通过特征聚合模块提取融合局部特征和全局特征的帧级特征;时域特征聚合模块基于注意力机制用于聚合帧级特征,以提取用于视频重识别的视频级特征,通过此过程,实现一个端到端的视频行人重识别流程。与现有技术相比,本发明设计了空间特征聚合模块和时序特征聚合模块这两个核心模块,可生成具有判别性和鲁棒性的视频级特征,够有效应对帧遮挡以及类间差异较小等挑战,并且可以显著提升视频级表示的判别性和鲁棒性。
-
公开(公告)号:CN118155065B
公开(公告)日:2024-11-15
申请号:CN202410258588.4
申请日:2024-03-07
Applicant: 重庆交通大学
Abstract: 本发明公开了一种基于注意力机制的多模态桥梁裂缝特征提取方法和系统,所述方法包括:收集桥梁裂缝的多模态数据;设计各个模态的子网络,在子网络中引入自注意力机制,每个子网络负责处理一种特定类型的数据;在各个模态的子网络间引入多模态交叉注意力机制,以增强多模态之间的相关性;将各个模态子网络的输出进行多模态特征的融合,确保融合后的特征能够全面地捕捉每个模态的关键信息;从融合后的数据中提取裂缝的关键特征。本发明提出的基于注意力机制的多模态特征提取方法能够很好的提取桥梁裂缝特征。
-
公开(公告)号:CN118333962A
公开(公告)日:2024-07-12
申请号:CN202410429658.8
申请日:2024-04-10
Applicant: 重庆交通大学
IPC: G06T7/00 , G06V10/26 , G06V10/42 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/0495
Abstract: 本发明属于图像处理技术领域,具体涉及一种基于改进DeepLabV3+的混凝土桥梁裂缝检测方法,包括:获取待检测的混凝土桥梁图像,将待检测的混凝土桥梁图像输入到训练后的改进DeepLabV3+神经网络中,得到混凝土裂缝图像的分割信息;根据混凝土裂缝图像的分割信息对混凝土桥梁裂缝进行检测;改进DeepLabV3+神经网络包括轻量化的主干网络、空洞空间金字塔池化模块、多层次特征融合网络以及解码模块;本发明在空洞卷积金字塔后引入vision transformer网络,并与卷积网络组成多层次特征融合网络,以提高性能。
-
公开(公告)号:CN118155065A
公开(公告)日:2024-06-07
申请号:CN202410258588.4
申请日:2024-03-07
Applicant: 重庆交通大学
Abstract: 本发明公开了一种基于注意力机制的多模态桥梁裂缝特征提取方法和系统,所述方法包括:收集桥梁裂缝的多模态数据;设计各个模态的子网络,在子网络中引入自注意力机制,每个子网络负责处理一种特定类型的数据;在各个模态的子网络间引入多模态交叉注意力机制,以增强多模态之间的相关性;将各个模态子网络的输出进行多模态特征的融合,确保融合后的特征能够全面地捕捉每个模态的关键信息;从融合后的数据中提取裂缝的关键特征。本发明提出的基于注意力机制的多模态特征提取方法能够很好的提取桥梁裂缝特征。
-
公开(公告)号:CN117290520A
公开(公告)日:2023-12-26
申请号:CN202311380050.2
申请日:2023-10-23
Applicant: 重庆交通大学
IPC: G06F16/36 , G06N5/025 , G06N5/04 , G06N3/0464 , G06N3/08
Abstract: 本发明属于桥梁检测知识图谱补全技术领域,尤其涉及一种基于知识蒸馏联合内生规则约束的知识图谱补全方法,包括以下步骤:S1、设计出n种桥梁检测领域常见的知识图谱子图结构;S2、使用S1的知识图谱子图结构对原知识图谱的三元组进行筛选,得到m个三元组子集;S3、对S2筛选出的三元组子集进行清洗处理,得到规则训练集;S4、将规则训练集作为训练数据集的补充,使用规则训练集与训练数据集联合训练知识蒸馏的Teacher网络;S5、将训练数据集中的正确标签联合做为监督,将训练后的Teacher网络的预测结果作为另一种监督,联合对知识蒸馏的Student网络进行训练;S6、使用训练后的Student网络对原知识图谱进行补全。本方法可以较好的实现桥梁管养领域的知识图谱补全。
-
-
-
-
-
-
-
-
-