-
公开(公告)号:CN113960906B
公开(公告)日:2022-08-12
申请号:CN202111057399.3
申请日:2021-09-09
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于多模光纤照明的点衍射数字全息显微装置,包括部分相干光产生模块、望远镜系统、物参光分离模块和图像采集模块,其中,部分相干光产生模块用于产生部分相干照明光,包括激光器以及沿激光器的光路依次设置的第一显微物镜、毛玻璃片、成像单元和多模光纤单元,毛玻璃片垂直于光轴设置且能够绕光轴旋转以产生部分相干光;望远镜系统用于获得具有样品信息的物光波场分布;物参光分离模块用于将来自望远镜系统具有样品信息的物光波进行衍射分光,产生偏振方向正交的物光和参考光;图像采集模块用于采集由物光和参考光产生的全息图。该显微装置具有可实时振幅/相位定量显微成像、抗振动性好、信噪比高、结构简单等优点。
-
公开(公告)号:CN114839606A
公开(公告)日:2022-08-02
申请号:CN202210471755.4
申请日:2022-04-29
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种稀疏频率编码抗干扰波形信号的相干积累方法,主要解决捷变频信号由于其相位非线性变化而无法使用传统相干积累方法进行积累的问题。其实现方案为:雷达发射多组稀疏频率编码信号,获取基带回波信号;按照载频大小对基带回波信号进行脉冲压缩并分类;对分类后的每组信号分别进行同频相干积累;对同频相干积累后的每组信号分别进行速度补偿;按照载频大小对速度补偿后的每组信号进行重排;根据重排后的信号构建距离参数优化的目标函数,求解该目标函数得到最优距离参数;利用最优距离参数对重排后的信号进行距离补偿,再进行IFFT,得到异频相干积累结果。本发明提升了捷变频雷达的抗干扰性能,可用于实现捷变频雷达的目标检测。
-
公开(公告)号:CN114527430A
公开(公告)日:2022-05-24
申请号:CN202210113566.X
申请日:2022-01-30
Applicant: 西安电子科技大学
Abstract: 本发明提出了一种频率分组编码的捷变频抗干扰信号相参积累方法,在提高了波形自由度的同时,解决了现有技术中存在的捷变频信号无法相参积累或积累后出现伪峰的问题。实现步骤为:首先对脉冲信号进行频率分组编码;然后对每个频率编码后的脉冲的回波信号进行预处理,并对每个预处理后的回波信号进行速度遍历处理;再对每个速度遍历后的信号进行相参投影处理;最后将所有相参投影后的信号累加,实现捷变频抗干扰信号相参积累。本发明增大了捷变频抗干扰波形的捷变自由度,实现了捷变频抗干扰波形的相参积累,有效地提高了捷变频体制雷达的抗干扰性能和目标检测性能。
-
公开(公告)号:CN114428230A
公开(公告)日:2022-05-03
申请号:CN202111651968.7
申请日:2021-12-30
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种子带频率编码的切片干扰抑制方法方法,主要解决现有技术仅利用相关性不能实现剔除间歇采样转发的干扰数据,导致干扰信号能量大于信号能量时无法正确识别目标的问题,以及当干信比过大时,过渡带干扰残余会淹没相邻目标信号段导致无法正确识别目标的问题。本发明的具体步骤为:1、估计切片干扰参数;2、生成脉内子脉冲频率的发射信号;3、根据干扰参数对发射信号的子脉冲频率编码;4、构建包含干扰和目标的回波信号波形;5、分段脉压抗干扰。本发明通过频率编码使被采样转发子脉冲和未被采样子脉冲频段分别集中,提高了目标检测概率、目标积累增益和目标检测的可靠性。
-
公开(公告)号:CN113960906A
公开(公告)日:2022-01-21
申请号:CN202111057399.3
申请日:2021-09-09
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于多模光纤照明的点衍射数字全息显微装置,包括部分相干光产生模块、望远镜系统、物参光分离模块和图像采集模块,其中,部分相干光产生模块用于产生部分相干照明光,包括激光器以及沿激光器的光路依次设置的第一显微物镜、毛玻璃片、成像单元和多模光纤单元,毛玻璃片垂直于光轴设置且能够绕光轴旋转以产生部分相干光;望远镜系统用于获得具有样品信息的物光波场分布;物参光分离模块用于将来自望远镜系统具有样品信息的物光波进行衍射分光,产生偏振方向正交的物光和参考光;图像采集模块用于采集由物光和参考光产生的全息图。该显微装置具有可实时振幅/相位定量显微成像、抗振动性好、信噪比高、结构简单等优点。
-
公开(公告)号:CN106093870B
公开(公告)日:2018-11-09
申请号:CN201610370820.9
申请日:2016-05-30
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种高超声速飞行器下降段的SAR‑GMTI杂波抑制方法,其思路为:建立高超声速飞行器下降段的雷达运动几何模型,其中雷达包含N个天线通道,P为雷达所在场景中任意一个运动目标,并将第n个天线通道与运动目标P之间的瞬时斜距表示为Rn(ta),得到N个等效相位中心通道的回波信号;获取N个等效相位中心通道的回波信号经距离压缩后的距离频域‑方位时域表示形式后进行相位补偿,得到相位补偿后N个等效相位中心通道的距离频域‑方位时域回波信号,再依次计算距离多普勒域的N个等效相位中心通道回波信号、距离多普勒域的运动目标P的回波信号和距离多普勒域的杂波信号,计算空时自适应杂波抑制的最优权系数矢量,最终得到杂波抑制后运动目标P的回波信号。
-
公开(公告)号:CN106093870A
公开(公告)日:2016-11-09
申请号:CN201610370820.9
申请日:2016-05-30
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种高超声速飞行器下降段的SAR‑GMTI杂波抑制方法,其思路为:建立高超声速飞行器下降段的雷达运动几何模型,其中雷达包含N个天线通道,P为雷达所在场景中任意一个运动目标,并将第n个天线通道与运动目标P之间的瞬时斜距表示为Rn(ta),得到N个等效相位中心通道的回波信号;获取N个等效相位中心通道的回波信号经距离压缩后的距离频域‑方位时域表示形式后进行相位补偿,得到相位补偿后N个等效相位中心通道的距离频域‑方位时域回波信号,再依次计算距离多普勒域的N个等效相位中心通道回波信号、距离多普勒域的运动目标P的回波信号和距离多普勒域的杂波信号,计算空时自适应杂波抑制的最优权系数矢量,最终得到杂波抑制后运动目标P的回波信号。
-
公开(公告)号:CN105022034A
公开(公告)日:2015-11-04
申请号:CN201510371745.3
申请日:2015-06-30
Applicant: 西安电子科技大学
IPC: G01S7/02
CPC classification number: G01S7/02
Abstract: 本发明公开了一种集中式MIMO雷达的发射OFDM波形的优化设计方法,包括以下步骤:(1)随机产生M个长度为,服从[0 1]分布的向量φ1,...,φm,...,φM;(2)定义第m个子载频信号的初始值为并求解第m个子载频信号(3)根据第m个子载频信号设计具有交织结构的第m个发射天线的子载波权值向量并对M个子载频信号依次进行子载频插值,得到子载频序列U0,...,Um,...,UM-1,将其写为矩阵形式,得到子载频矩阵U;(4)对子载频矩阵U按列进行离散傅里叶变换,得到时域离散基带信号矩阵u,并将其扩展为带有循环前缀的OFDM发射波形矩阵v=[v1,…,vm,…,vM];(5)对第m个发射天线的OFDM发射波形序列vm进行数/模变换,并上变频到雷达载频fc,得到第m个天线的集中式MIMO雷达的发射信号。
-
公开(公告)号:CN115548665B
公开(公告)日:2025-05-23
申请号:CN202211314071.X
申请日:2022-10-25
Applicant: 西安电子科技大学广州研究院 , 京信射频技术(广州)有限公司
Abstract: 本发明提供一种Vivaldi天线,包括介质板和设置在介质板上的辐射片,所述辐射片的中部设有辐射槽,所述辐射片在所述辐射槽的其中一端设有短路腔,所述辐射片在靠近短路腔的位置开设有复合槽,所述复合槽包括沿所述辐射片远离所述辐射槽的一侧朝所述中部方向依次贯通开设的第一开槽和第二开槽,所述第二开槽相对于所述第一开槽折向所述短路腔开设。本发明的Vivaldi天线可通过设置复合槽,使得电流集中于辐射槽上,抑制辐射片的边沿上的边缘电流,提升方向图性能,拓展低频带宽,且还可实现Vivaldi天线的小型化。
-
公开(公告)号:CN119395685A
公开(公告)日:2025-02-07
申请号:CN202411520359.1
申请日:2024-10-29
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于低成本星载分布式雷达的自适应随机有限集跟踪方法,主要解决现有技术成本高、自适应程度差的问题。其实现方案为:通过辅星转发方式构建等效一发多收模型,实现低成本化录取回波数据;根据回波数据形成两个等效长合成孔径;通过合成孔径成像、杂波抑制及检测获得量测点;利用多步量测点自适应地生成新生目标强度;利用多步量测点自适应地估计每步下的杂波率;利用自适应生成的强度和杂波率进行随机有限集目标跟踪。本发明成本低、相参积累时间短,能在保持实时跟踪处理的前提下避免无参数先验造成的性能下降,有助于进一步实现工程化,可用于低成本分布式雷达地面运动目标或低空运动目标的实时检测跟踪。
-
-
-
-
-
-
-
-
-