基于软阈值编码的快速图像超分辨方法

    公开(公告)号:CN105118025A

    公开(公告)日:2015-12-02

    申请号:CN201510493934.8

    申请日:2015-08-12

    CPC classification number: G06T3/4076

    Abstract: 本发明公开了一种基于软阈值编码的快速图像超分辨方法。其步骤为:(1)输入待处理的低分辨图像;(2)获得待处理的低分辨图像块集;(3)获得高和低分辨训练图像块集;(4)计算高和低分辨字典;(5)获得高分辨图像块集;(6)获得高分辨图像。本发明将软阈值编码引入到图像超分辨领域来,克服了现有技术中采用稀疏表示从而导致的重构时间过程、引入噪声和不必要信息的缺陷,超分辨恢复的图像轮廓更加清晰,更加真实自然。

    基于Wishart深度网络的极化SAR图像分类方法

    公开(公告)号:CN105046268B

    公开(公告)日:2018-05-04

    申请号:CN201510341168.3

    申请日:2015-06-18

    Abstract: 本发明公开了一种基于Wishart深度网络的极化SAR图像分类方法,主要解决现在特征提取需要很多先验知识以及人工劳动强度大的问题。其实现步骤为:(1)输入极化SAR图像并做滤波处理;(2)对滤波后的图像构造多层Wishart RBM学习特征;(3)用学习到的特征训练softmax分类器;(4)用多层Wishart RBM和softmax分类器构造深度网络DBN,并对其进行训练;(6)用深度网络DBN对极化SAR图像分类并输出结果。本发明与经典分类方法相比,分类正确率更高,分类结果同质区域更完整,区域一致性更好,分类性能更好,适用于对极化SAR图像进行地物分类和目标识别。

    基于Wishart深度网络的极化SAR图像分类方法

    公开(公告)号:CN105046268A

    公开(公告)日:2015-11-11

    申请号:CN201510341168.3

    申请日:2015-06-18

    CPC classification number: G06K9/6278 G06K9/6217

    Abstract: 本发明公开了一种基于Wishart深度网络的极化SAR图像分类方法,主要解决现在特征提取需要很多先验知识以及人工劳动强度大的问题。其实现步骤为:(1)输入极化SAR图像并做滤波处理;(2)对滤波后的图像构造多层Wishart RBM学习特征;(3)用学习到的特征训练softmax分类器;(4)用多层Wishart RBM和softmax分类器构造深度网络DBN,并对其进行训练;(6)用深度网络DBN对极化SAR图像分类并输出结果。本发明与经典分类方法相比,分类正确率更高,分类结果同质区域更完整,区域一致性更好,分类性能更好,适用于对极化SAR图像进行地物分类和目标识别。

    基于最大期望算法的自然图像超分辨方法

    公开(公告)号:CN105005965A

    公开(公告)日:2015-10-28

    申请号:CN201510494788.0

    申请日:2015-08-12

    CPC classification number: G06T3/4007 G06T3/4053

    Abstract: 本发明公开了一种基于最大期望算法的自然图像超分辨方法。其步骤为:(1)输入低分辨图像;(2)插值图像;(3)获得隐图像;(4)切成隐图像块;(5)获得隐图象块的相似矩阵;(6)获得隐图像块的字典;(7)获得估计图像块的均值和协方差;(8)获得估计图像块的最大后验估计值;(9)获得高分辨图像;(10)计算相对误差;(11)判断是否满足终止条件;(12)更新数据;(13)输出最优的高分辨图像。本发明将最大期望算法引入到自然图像超分辨领域中,获得丰富的恢复图像细节信息,适合在复杂情况下的图像超分辨。

Patent Agency Ranking