-
公开(公告)号:CN102663370A
公开(公告)日:2012-09-12
申请号:CN201210120265.6
申请日:2012-04-23
Applicant: 苏州大学
Abstract: 本发明公开了一种人脸识别的方法,通过对测试样本和训练样本进行随机的降维,并生成相似性学习训练集和测试集,选择支持向量机的正则参数和高斯核函数,将相似性学习的训练集输入到正则参数和高斯核函数中,得到分类器模型,再将相似性学习的测试集输入到分类器模型中,得到分类结果,通过将所述分类结果进行求和,与某一类样本的样本数量的商为所述某一类的相似性概率的大小,取得最大值,并将所述最大值输出,得到相似性概率的大小,得到最准确的人脸识别结果。通过对样本的降维,将样本复杂度降低,使得基于SVM来学习人脸图像之间的相似性的算法快速;另外,通过对于每一类进行的算法,使得人脸识别率有了相应的提高。