-
公开(公告)号:CN112199504B
公开(公告)日:2022-06-03
申请号:CN202011184688.5
申请日:2020-10-30
Applicant: 福州大学
IPC: G06F16/35 , G06F40/247 , G06F40/30 , G06N3/04
Abstract: 本发明涉及一种融合外部知识与交互注意力机制的视角级文本情感分类方法及系统,包括步骤:构建带有外部知识的文本序列内容,同时引入哨兵向量改善外部知识对模型的误导作用;构建带有交互信息及位置信息的记忆内容;构建记忆内容的多层注意力表示,并将注意力结果与门控循环单元非线性结合,最终形成视角级文本情感特征表示;采用分类函数得到文本最终的情感分类结果。本发明能够对视角级文本进行特征化处理,并通过BiLSTM从文本中提取语义特征,然后通过多层注意力机制,得到最终的分类结果。
-
公开(公告)号:CN113505226A
公开(公告)日:2021-10-15
申请号:CN202110777058.7
申请日:2021-07-09
Applicant: 福州大学
Abstract: 本发明涉及一种融合图卷积神经网络的文本情感分类系统。包括:数据预处理模块,用于构造用户与用户关系图和用户与产品关系图;评论文本预处理模块,用于对文档文本进行特征化处理;基于循环神经网络的编码模块,获取单词级别和句子级别的编码;基于图卷积神经网络的用户和产品特征提取模块,获取用户和产品的向量表示;用户产品记忆模块,获取具有代表性的用户和产品信息的向量表示;注意力机制模块,分别获取用户和产品的句子和文档表示向量;预测情感极性模块,利用分类函数得到最终的情感分类结果。本发明能够有效的学习用户与用户之间和产品与产品之间的内联关系,并通过用户层次和产品层次的分层注意力网络,最终识别出文本的情感类别。
-